Summaries

Session 1.3

26th August 2009

We extend our study of probability to dice. We revisit the idea of a model or population proportion as a probability, and introduce the idea of a random variable.

Models

A Fair, Six-sided Die

Face Value, d6 (FV d6)

Probability

1

1/6

2

1/6

3

1/6

4

1/6

5

1/6

6

1/6

A Fair, Three-sided Die

Face Value, d3 (FV d3)

Probability

1

1/3

2

1/3

3

1/3

Using a Fair, Six-sided Die to Simulate A Fair, Three-sided Die

Face Value, d6 (FV d6)

Mapped Face Value, d3 (FV d3)

1

1

2

3

2

4

5

3

6

Probability Calculations (fair d6fair d3)

Pr{E} denotes Probability for the event E.

The Fair d6 Model

FV: Face Values: 1,2,3,4,5,6

Fair Model: Equally likely face values – 1/6 per face value

 

Pr{d6 Shows 1} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “1”.

 

Pr{d6 Shows 2} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “2”.

 

Pr{d6 Shows 3} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “3”.

 

Pr{d6 Shows 4} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “4”.

 

Pr{d6 Shows 5} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “5”.

 

Pr{d6 Shows 6} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “6”.

 

The Fair d3 Model Nested within a Fair d6 Model

 

FV: Face Values: 1(1,2), 2(3,4), 3(5,6)

Fair Model: Equally likely face values –  (2/6 =)1/3 per face value.

 

Pr{d3 shows “1”} = Pr{d6 Shows 1} + Pr{d6 Shows 2}1 = (1/6) + (1/6) = 2/6 = 1/3 @ .3333 or 33.33%

In long runs of tosses, approximately 1 toss in 3 shows “1”.

 

Pr{d3 shows “2”} = Pr{d6 Shows 3} + Pr{d6 Shows 4} = (1/6) + (1/6)2 = 2/6 = 1/3 @ .3333 or 33.33%

In long runs of tosses, approximately 1 toss in 3 shows “2”.

 

Pr{d3 shows “3”} = Pr{d6 Shows 5} + Pr{d6 Shows 6} = (1/6) + (1/6) = 2/6 = 1/33 @ .3333 or 33.33%

In long runs of tosses, approximately 1 toss in 3 shows “3”.

 

1. Additive Rule – Map Faces to Faces

2. Inheritance of Fair Model

3. Fair d3 Model from Fair d6 Model

In the samples, compare the sample proportions (p) to the model probabilities (P) listed above.

Samples 6.30

Sample #1

Sample #2

FV6

n6

p6

FV3

n3

p3

FV6

n6

p6

FV3

n3

p3

1

8

0.16

1

6

0.12

2

9

0.18

1

17

0.34

2

6

0.12

1

12

0.24

3

9

0.18

3

12

0.24

4

8

0.16

2

17

0.34

4

8

0.16

2

20

0.4

5

10

0.2

5

6

0.12

6

6

0.12

3

16

0.32

6

12

0.24

3

18

0.36

Total

50

1

Total

50

1

Total

50

1

Total

50

1

Sample #3

Sample #4

FV6

n6

p6

FV3

n3

p3

FV6

n6

p6

FV3

n3

p3

1

11

0.22

1

4

0.08

2

13

0.26

1

24

0.48

2

4

0.08

1

8

0.16

3

11

0.22

3

9

0.18

4

3

0.06

2

14

0.28

4

6

0.12

2

15

0.3

5

7

0.14

5

11

0.22

6

5

0.1

3

12

0.24

6

16

0.32

3

27

0.54

Total

50

1

Total

50

1

Total

50

1

Total

50

1

Sample #5

Sample #6

FV6

n6

p6

FV3

n3

p3

FV6

n6

p6

FV3

n3

p3

1

5

0.1

1

8

0.16

2

11

0.22

1

16

0.32

2

9

0.18

1

17

0.34

3

13

0.26

3

9

0.18

4

4

0.08

2

17

0.34

4

8

0.16

2

17

0.34

5

8

0.16

5

9

0.18

6

9

0.18

3

17

0.34

6

7

0.14

3

16

0.32

Total

50

1

Total

50

1

Total

50

1

Total

50

1

Pooled135

Pooled246

FV6

n6

p6

FV3

n3

p3

FV6

n6

p6

FV3

n3

p3

1

24

0.16

1

18

0.12

2

33

0.22

1

57

0.38

2

19

0.127

1

37

0.247

3

33

0.22

3

30

0.2

4

15

0.1

2

48

0.32

4

22

0.147

2

52

0.347

5

25

0.167

5

26

0.173

6

20

0.133

3

45

0.3

6

35

0.233

3

61

0.407

Total

150

1

Total

150

1

Total

150

1

Total

150

1

 

 

Pooled12

FV6

n6

p6

FV3

n3

p3

1

14

0.14

2

15

0.15

1

29

0.29

3

21

0.21

4

16

0.16

2

37

0.37

5

16

0.16

6

18

0.18

3

34

0.34

Total

100

1

Total

100

1

Pooled34

FV6

n6

p6

FV3

n3

p3

1

15

0.15

2

17

0.17

1

32

0.32

3

20

0.2

4

9

0.09

2

29

0.29

5

18

0.18

6

21

0.21

3

39

0.39

Total

100

1

Total

100

1

Pooled56

FV6

n6

p6

FV3

n3

p3

1

13

0.13

2

20

0.2

1

33

0.33

3

22

0.22

4

12

0.12

2

34

0.34

5

17

0.17

6

16

0.16

3

33

0.33

Total

100

1

Total

100

1

Pooled123456

FV6

n6

p6

FV3

n3

p3

1

42

0.14

2

52

0.173

1

94

0.313

3

63

0.21

4

37

0.123

2

100

0.333

5

51

0.17

6

55

0.183

3

106

0.353

Total

300

1

Total

300

1

Samples 8.00

Sample #1

Sample #2

FV6

n6

p6

FV3

n3

p3

FV6

n6

p6

FV3

n3

p3

1

6

0.12

1

10

0.2

2

9

0.18

1

15

0.3

2

8

0.16

1

18

0.36

3

15

0.3

3

8

0.16

4

8

0.16

2

23

0.46

4

4

0.08

2

12

0.24

5

2

0.04

5

8

0.16

6

10

0.2

3

12

0.24

6

12

0.24

3

20

0.4

Total

50

1

Total

50

1

Total

50

1

Total

50

1

Sample #3

Sample #4

FV6

n6

p6

FV3

n3

p3

FV6

n6

p6

FV3

n3

p3

1

8

0.16

1

4

0.08

2

9

0.18

1

17

0.34

2

8

0.16

1

12

0.24

3

8

0.16

3

7

0.14

4

5

0.1

2

13

0.26

4

13

0.26

2

20

0.4

5

7

0.14

5

10

0.2

6

13

0.26

3

20

0.4

6

8

0.16

3

18

0.36

Total

50

1

Total

50

1

Total

50

1

Total

50

1

Sample #5

Sample #6

FV6

n6

p6

FV3

n3

p3

FV6

n6

p6

FV3

n3

p3

1

7

0.14

1

15

0.3

2

7

0.14

1

14

0.28

2

8

0.16

1

23

0.46

3

9

0.18

3

11

0.22

4

9

0.18

2

18

0.36

4

5

0.1

2

16

0.32

5

9

0.18

5

5

0.1

6

9

0.18

3

18

0.36

6

6

0.12

3

11

0.22

Total

50

1

Total

50

1

Total

50

1

Total

50

1

Pooled135

Pooled246

FV6

n6

p6

FV3

n3

p3

FV6

n6

p6

FV3

n3

p3

1

21

0.14

1

29

0.193

2

25

0.167

1

46

0.31

2

24

0.16

1

53

0.353

3

32

0.213

3

26

0.173

4

22

0.147

2

54

0.36

4

22

0.147

2

48

0.32

5

18

0.12

5

23

0.153

6

32

0.213

3

50

0.33

6

26

0.173

3

49

0.327

Total

150

1

Total

150

1

Total

150

1

Total

150

1

 

Pooled12

FV6

n6

p6

FV3

n3

p3

1

16

0.16

2

17

0.17

1

33

0.33

3

23

0.23

4

12

0.12

2

35

0.35

5

10

0.1

6

22

0.22

3

32

0.32

Total

100

1

Total

100

1

Pooled34

FV6

n6

p6

FV3

n3

p3

1

12

0.12

2

17

0.17

1

29

0.29

3

15

0.15

4

18

0.18

2

33

0.33

5

17

0.17

6

21

0.21

3

38

0.38

Total

100

1

Total

100

1

Pooled56

FV6

n6

p6

FV3

n3

p3

1

22

0.22

2

15

0.15

1

37

0.37

3

20

0.2

4

14

0.14

2

34

0.34

5

14

0.14

6

15

0.15

3

29

0.29

Total

100

1

Total

100

1

Pooled123456

FV6

n6

p6

FV3

n3

p3

1

50

0.167

2

49

0.163

1

99

0.33

3

58

0.193

4

44

0.147

2

102

0.34

5

41

0.137

6

58

0.193

3

99

0.33

Total

300

1

Total

300

1

Pooled Across Sessions (6.30 + 8.00)

Pooled135

FV6

n6

p6

FV3

n3

p3

1

45

0.15(versus .1667)

2

58

0.193(versus .1667)

1

103

0.34(versus .3333)

3

65

0.217(versus .1667)

4

37

0.123(versus .1667)

2

102

0.34(versus .3333)

5

43

0.143(versus .1667)

6

52

0.173(versus .1667)

3

95

0.32(versus .3333)

Total

300

1

Total

300

1

 

Poole 246

FV6

n6

p6

FV3

n3

p3

1

47

0.157(versus .1667)

2

43

0.143(versus .1667)

1

90

0.3(versus .3333)

3

56

0.187(versus .1667)

4

44

0.147(versus .1667)

2

100

0.333(versus .3333)

5

49

0.163(versus .1667)

6

61

0.203(versus .1667)

3

110

0.367(versus .3333)

Total

300

1

Total

300

1

 

Pooled All

FV6

n6

p6

FV3

n3

p3

1

92

0.153(versus .1667)

2

101

0.168(versus .1667)

1

193

0.322(versus .3333)

3

121

0.202(versus .1667)

4

81

0.135(versus .1667)

2

202

0.337(versus .3333)

5

92

0.153(versus .1667)

6

113

0.188(versus .1667)

3

205

0.342(versus .3333)

Total

600

1

Total

600

1