2nd September 2009
Session 1.5
Random Variables
Pairs of Dice and Random Variables.
Case Study #1.7: Pairs to Sums
Case Description: Work with a random variable that acts on pairs of outcomes.
We assume that the dice are fair, and that the dice operate separately and independently.
Case Study Objectives:
We toss a pair of fair dice, one three-sided d3:(faces 1,2,3) and one four-sided d4:(faces 1,2,3,4).
How many pairs are possible,
and what is the probability for each pair ?
Fair D4 model
Face Value |
Probability |
1 |
1/4 |
2 |
1/4 |
3 |
1/4 |
4 |
1/4 |
Total |
4/4 |
Fair D3 model
Face Value |
Probability |
1 |
1/3 |
2 |
1/3 |
3 |
1/3 |
Total |
3/3 |
There are 4*3=12 distinct pairs possible: Writing each pair
as (d4 face value, d3 face value):
(1,1), (2,1), (3,1), (4,1), (1,2), (2,2), (3,2), (4,2),
(1,3), (2,3), (3,3), (4,3)
(d4,d3) |
1 |
2 |
3 |
4 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
Under the independent
multiplication principle,
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pair → Sum |
1 |
2 |
3 |
4 |
1 |
(1,1) → 2 |
(2,1) → 3 |
(3,1) → 4 |
(4,1) → 5 |
2 |
(1,2) → 3 |
(2,2) → 4 |
(3,2) → 5 |
(4,2) → 6 |
3 |
(1,3) → 4 |
(2,3) → 5 |
(3,3) → 6 |
(4,3) → 7 |
Compute probabilities for each sum. Map the pairs to sums, and list the pairs that lead to each sum. Using the probabilities for each pair, compute probabilities for each sum value:
Pr
Pr
1/12
Pr
Pr
Pr
(1/12)+(1/12)=
2/12
Pr
Pr
Pr
(1/12)+(1/12)
+(1/12)=
3/12
Pr
Pr
Pr
(1/12)+(1/12)
+(1/12)=
3/12
Pr
Pr
Pr
(1/12)+(1/12)=
2/12
Pr
Pr
1/12
Case Study #1.8
Probability Computation Rules
Case Description: Compute selected probabilities associated with a pair of dice.
D4 model
Face Value |
Probability |
1 |
4/10 |
2 |
3/10 |
3 |
2/10 |
4 |
1/10 |
Total |
10/10 |
d3 model
Face Value |
Probability |
1 |
1/6 |
2 |
2/6 |
3 |
3/6 |
Total |
1.00 |
The experiment: On each trial of the experiment, we toss the pair of dice (defined above) and observe the pair of faces that show.
Case Objectives: Lay out the possible face-pairs, and compute the probability for each pair. State any required assumptions.
Consider the random variable that maps the pair of face values into the sum of the face values.
The PAIR Model
There are 4*3=12 distinct pairs possible: Writing each pair
as (d4 face value, d3 face value):
(1,1), (2,1), (3,1), (4,1), (1,2), (2,2), (3,2), (4,2),
(1,3), (2,3), (3,3), (4,3)
(d4,d3) |
1 |
2 |
3 |
4 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
Under the independent
multiplication principle,
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
The SUM Model
Pair → Sum |
1 |
2 |
3 |
4 |
1 |
(1,1) → 2 |
(2,1) → 3 |
(3,1) → 4 |
(4,1) → 5 |
2 |
(1,2) → 3 |
(2,2) → 4 |
(3,2) → 5 |
(4,2) → 6 |
3 |
(1,3) → 4 |
(2,3) → 5 |
(3,3) → 6 |
(4,3) → 7 |
Pr
Pr
Pr
Pr
(3/60)+(8/60)=
11/60
Pr
Pr
Pr
(2/60)+(6/60)+(12/60)=
20/60
Pr
Pr
Pr
(1/60)+(4/60) +(9/60)=
14/60
Pr
Pr
Pr
8/60
Pr
Pr
3/60
Compare sample proportions (p) to model probabilities (P).
Compare precision with increasing sample size.
Samples
6.30 Samples
Fair Pair |
Loaded Pair |
||||||
#1 |
#4 |
||||||
Sum |
# |
p |
P |
Sum |
# |
p |
P |
2 |
2 |
2/50=0.04 |
1/12=0.083333 |
2 |
2 |
2/50=0.04 |
4/60=0.066667 |
3 |
12 |
12/50=0.24 |
2/12=0.166667 |
3 |
16 |
16/50=0.32 |
11/60=0.183333 |
4 |
15 |
15/50=0.3 |
3/12=0.25 |
4 |
14 |
14/50=0.28 |
20/60=0.333333 |
5 |
10 |
10/50=0.2 |
3/12=0.25 |
5 |
9 |
9/50=0.18 |
14/60=0.233333 |
6 |
6 |
6/50=0.12 |
2/12=0.166667 |
6 |
7 |
7/50=0.14 |
8/60=0.133333 |
7 |
5 |
5/50=0.1 |
1/12=0.083333 |
7 |
2 |
2/50=0.04 |
3/60=0.05 |
Total |
50 |
1 |
12/12=1 |
Total |
50 |
1 |
60/60=1 |
#2 |
#5 |
||||||
Sum |
# |
p |
P |
Sum |
# |
p |
P |
2 |
6 |
0.12 |
0.083333 |
2 |
4 |
0.08 |
0.066667 |
3 |
5 |
0.1 |
0.166667 |
3 |
8 |
0.16 |
0.183333 |
4 |
12 |
0.24 |
0.25 |
4 |
23 |
0.46 |
0.333333 |
5 |
11 |
0.22 |
0.25 |
5 |
7 |
0.14 |
0.233333 |
6 |
11 |
0.22 |
0.166667 |
6 |
4 |
0.08 |
0.133333 |
7 |
5 |
0.1 |
0.083333 |
7 |
4 |
0.08 |
0.05 |
Total |
50 |
1 |
1 |
Total |
50 |
1 |
1 |
#3 |
#6 |
||||||
Sum |
# |
p |
P |
Sum |
# |
p |
P |
2 |
6 |
0.12 |
0.083333 |
2 |
4 |
0.08 |
0.066667 |
3 |
7 |
0.14 |
0.166667 |
3 |
6 |
0.12 |
0.183333 |
4 |
16 |
0.32 |
0.25 |
4 |
12 |
0.24 |
0.333333 |
5 |
14 |
0.28 |
0.25 |
5 |
15 |
0.3 |
0.233333 |
6 |
7 |
0.14 |
0.166667 |
6 |
8 |
0.16 |
0.133333 |
7 |
0 |
0 |
0.083333 |
7 |
5 |
0.1 |
0.05 |
Total |
50 |
1 |
1 |
Total |
50 |
1 |
1 |
123 |
456 |
||||||
Sum |
# |
p |
P |
Sum |
# |
p |
P |
2 |
14 |
0.093333 |
0.083333 |
2 |
10 |
0.066667 |
0.066667 |
3 |
24 |
0.16 |
0.166667 |
3 |
30 |
0.2 |
0.183333 |
4 |
43 |
0.286667 |
0.25 |
4 |
49 |
0.326667 |
0.333333 |
5 |
35 |
0.233333 |
0.25 |
5 |
31 |
0.206667 |
0.233333 |
6 |
24 |
0.16 |
0.166667 |
6 |
19 |
0.126667 |
0.133333 |
7 |
10 |
0.066667 |
0.083333 |
7 |
11 |
0.073333 |
0.05 |
Total |
150 |
1 |
1 |
Total |
150 |
1 |
1 |
8.00 Samples
Fair Pair |
Loaded Pair |
||||||
#1 |
#4 |
||||||
Sum |
# |
p |
P |
Sum |
# |
p |
P |
2 |
4 |
0.08 |
0.08333333 |
2 |
5 |
0.1 |
0.06666667 |
3 |
7 |
0.14 |
0.16666667 |
3 |
9 |
0.18 |
0.18333333 |
4 |
19 |
0.38 |
0.25 |
4 |
16 |
0.32 |
0.33333333 |
5 |
11 |
0.22 |
0.25 |
5 |
11 |
0.22 |
0.23333333 |
6 |
6 |
0.12 |
0.16666667 |
6 |
5 |
0.1 |
0.13333333 |
7 |
3 |
0.06 |
0.08333333 |
7 |
4 |
0.08 |
0.05 |
Total |
50 |
1 |
1 |
Total |
50 |
1 |
1 |
#2 |
#5 |
||||||
Sum |
# |
p |
P |
Sum |
# |
p |
P |
2 |
6 |
0.12 |
0.08333333 |
2 |
3 |
0.06 |
0.06666667 |
3 |
5 |
0.1 |
0.16666667 |
3 |
14 |
0.28 |
0.18333333 |
4 |
11 |
0.22 |
0.25 |
4 |
15 |
0.3 |
0.33333333 |
5 |
15 |
0.3 |
0.25 |
5 |
10 |
0.2 |
0.23333333 |
6 |
10 |
0.2 |
0.16666667 |
6 |
8 |
0.16 |
0.13333333 |
7 |
3 |
0.06 |
0.08333333 |
7 |
0 |
0 |
0.05 |
Total |
50 |
1 |
1 |
Total |
50 |
1 |
1 |
#3 |
#6 |
||||||
Sum |
# |
p |
P |
Sum |
# |
p |
P |
2 |
3 |
0.06 |
0.08333333 |
2 |
1 |
0.02 |
0.06666667 |
3 |
6 |
0.12 |
0.16666667 |
3 |
16 |
0.32 |
0.18333333 |
4 |
17 |
0.34 |
0.25 |
4 |
15 |
0.3 |
0.33333333 |
5 |
14 |
0.28 |
0.25 |
5 |
6 |
0.12 |
0.23333333 |
6 |
7 |
0.14 |
0.16666667 |
6 |
10 |
0.2 |
0.13333333 |
7 |
3 |
0.06 |
0.08333333 |
7 |
2 |
0.04 |
0.05 |
Total |
50 |
1 |
1 |
Total |
50 |
1 |
1 |
123 |
456 |
||||||
Sum |
# |
p |
P |
Sum |
# |
p |
P |
2 |
13 |
0.086666667 |
0.08333333 |
2 |
9 |
0.06 |
0.06666667 |
3 |
18 |
0.12 |
0.16666667 |
3 |
39 |
0.26 |
0.18333333 |
4 |
47 |
0.313333333 |
0.25 |
4 |
46 |
0.306666667 |
0.33333333 |
5 |
40 |
0.266666667 |
0.25 |
5 |
27 |
0.18 |
0.23333333 |
6 |
23 |
0.153333333 |
0.16666667 |
6 |
23 |
0.153333333 |
0.13333333 |
7 |
9 |
0.06 |
0.08333333 |
7 |
6 |
0.04 |
0.05 |
Total |
150 |
1 |
1 |
Total |
150 |
1 |
1 |
We’re seeing the pair model inheriting its probability structure from the individual dice. The random variable in turn inherits its probability structure from the pair model.
Begin working case types involving random variables and
pairs of dice.