Key | The Comprehensive Final Examination | Math 1107 | Fall Semester 2010 | CJ Alverson

 

Protocol

 

You will use only the following resources: Your individual calculator; Your individual tool-sheets (two (2) 8.5 by 11 inch sheets); Your writing utensils; Blank Paper (provided by me); This copy of the hourly and the tables provided by me. Do not share these resources with anyone else. Show complete detail and work for full credit. Follow case study solutions and sample hourly keys in presenting your solutions. Work all four cases. Using only one side of the blank sheets provided, present your work. Do not write on both sides of the sheets provided, and present your work only on these sheets. When you’re done: Print your name on a blank sheet of paper. Place your tool-sheets, test and work under this sheet, and turn it all in to me. Do not share information with any other students during this test.

 

Sign and Acknowledge: I agree to follow this protocol. Initial: ______

 

______________________________________________________________________________

Name (PRINTED)                                          Signature                                          Date

 

Case One | Probability and Random Variables | Color Slot Machine

 

Here is our slot machine – on each trial, it produces an 8-color sequence, using the table below:

 

Sequence*

Probability

RRBBRRYR

.11

RRGRBRRB

.10

BYGGYGBR

.14

GRGYBRGG

.10

YYYRYGRY

.25

RYGRRBBY

.15

YYBYBGRR

.15

Total

1.00

 

Define ThingBC as the number of times that blue shows on a sequence. Compute the values and probabilities for ThingBC.

Sequence*

Probability

ThingBC

RRBBRRYR

.11

2

RRGRBRRB

.10

2

BYGGYGBR

.14

2

GRGYBRGG

.10

1

YYYRYGRY

.25

0

RYGRRBBY

.15

2

YYBYBGRR

.15

2

Total

1.00

 

 

Pr{ ThingBC = 0 } = Pr{ YYYRYGRY } = 0.25

Pr{ ThingBC = 1 } = Pr{ GRGYBRGG } = 0.10

Pr{ ThingBC = 2 } = Pr{ ThingBC ≠ 0 and ThingBC ≠ 1 } = 1 – 0.25 – 0.10 = 0.65

 

Or the long way …

 

Pr{ ThingBC = 2 } = Pr{ One of RRBBRRYR, RRGRBRRB, BYGGYGBR, RYGRRBBY or

YYBYBGRR Shows } = Pr{ RRBBRRYR } + Pr{ RRGRBRRB } + Pr{ BYGGYGBR } +

Pr{ RYGRRBBY } + Pr{ YYBYBGRR } =  .11 + .10 + .14 + .15 + .15 = .35 + .30 = 0.65

 

Define RVBY as 1 if “BY” shows on a sequence, and as 0 if “BY” does not show on a sequence. Compute the values and probabilities for RVBY.

Sequence*

Probability

RVBY

RRBBRRYR

.11

0/No

RRGRBRRB

.10

0/No

BYGGYGBR

.14

1/Yes

GRGYBRGG

.10

0/No

YYYRYGRY

.25

0/No

RYGRRBBY

.15

1/Yes

YYBYBGRR

.15

1/Yes

Total

1.00

 

 

Pr{RVBY = 1(Yes) / “BY” Shows} = Pr{One of BYGGYGBR, RYGRRBBY or YYBYBGRR Shows } =

Pr{ BYGGYGBR } + Pr{ RYGRRBBY } + Pr{ YYBYBGRR } = 0.14 + 0.15 + 0.15 = 0.44

 

Pr{ RVBY = 0(No) / “BY” Does Not Show } = 1 – Pr{RVBY = 1(Yes) / “BY” Shows} = 1 – 0.44 = 0.56

 

Or the long way …

 

Pr{RVBY = 0(No) / “BY” Does Not Show} =

Pr{One of RRBBRRYR, RRGRBRRB, GRGYBRGG or YYYRYGRY Shows } =

Pr{ RRBBRRYR } + Pr{ RRGRBRRB } + Pr{ GRGYBRGG } + Pr{ YYYRYGRY } =

0.11 + 0.10 + 0.10 + 0.25 = 0.31 + 0.25 = 0.56

 

Show all work in full detail for full credit.

 

Case Two | Confidence Interval, Population Mean | 2009 Fictitious City Iron Man

An Iron Man event comprises a 2.4 mile swim, 112 mile bike course and a full marathon (26.2 mile run). Suppose that we have a random sample of finishers of the 2009 Fictitious City Iron Man, whose finishing times (in hours) are listed below: 

8.25, 8.56, 8.75, 9.10, 9.12, 9.20, 9.22, 9.25, 9.45, 9.85, 10.15, 10.18, 10.20, 10.25, 10.30, 10.46, 10.56, 10.80, 11.05 11.23, 11.30, 11.52, 11.56, 11.60, 11.75, 11.80, 11.95, 12.05, 12.15, 12.18, 12.20, 12.25, 12.28, 12.30, 12.35, 12.45 12.50 12.59, 12.60, 12.70, 12.73, 12.85, 12.90, 13.10, 13.25, 14.15, 15.25, 16.75, 17.30, 18.10

Consider the population mean finish time for the 2009 Fictitious City Iron Man. Compute and interpret a 95% confidence interval for this population mean. Show your work. Completely discuss and interpret your results, as indicated in class and case study summaries.

 

lower95  = m – ( Z*sd  / sqrt(n) ) ≈ 11.6878 – (2*2.10451/sqrt(50)) ≈ 11.0926   

upper95 = m + ( Z*sd  / sqrt(n) ) ≈ ≈ 11.6878 – (2*2.10451/sqrt(50)) ≈ 12.2830

Our population is the population of people who finished the 2009 Fictitious City Iron Man, and our population mean is the population mean finish time.

Each member of the Family of Samples is a single random sample of 50 people who finished the 2009 Fictitious City Iron Man.

From each member sample, compute: sample mean finish time m, sample standard deviation sd, then from the means table row  2.00   0.02275    0.95450, use Z = 2. Then compute the interval

 

[lower95 = m – ( Z*sd  / sqrt(n) ), upper95 = m + ( Z*sd  / sqrt(n) )].

 

Doing this for each member of the family of samples yields a family of intervals.

 

Approximately 95% of the intervals in the family cover the unknown population mean. If our interval resides in this 95% supermajority of member intervals, then the true population mean finish time for the 2009 Fictitious City Iron Man is between 11.1 and 12.3 hours.

 

Case Three | Summary Intervals | 2009 Fictitious City Iron Man

 

Using the context and data of Case Two, let m denote the sample mean, and sd the sample standard deviation. Compute and interpret the intervals m±2sd and m±3sd, using Tchebysheff’s Inequalities and the Empirical Rule. Be specific and complete. Show your work, and discuss completely for full credit.

 

lower2 = m – (2*sd) ≈ 11.6878   (2*2.10451)   7.47878

upper2 = m + (2*sd) ≈ 11.6878 + (2*2.10451) 15.8968

 

lower3 = m – (3*sd) ≈ 11.6878   (3*2.10451)   5.37427

upper3 = m + (3*sd) ≈ 11.6878 + (3*2.10451) 18.0013

 

There are 50 people who finished the 2009 Fictitious City Iron Man in our sample. At least 75% of the people in our sample finished the 2009 Fictitious City Iron Man in between 7.48 and 15.90 hours. At least 89% of the people in our sample finished the 2009 Fictitious City Iron Man in between 5.37 and 18.00 hours.

 

If the finish times for the 2009 Fictitious City Iron Man cluster symmetrically around a central value, becoming rare as distance from the center increases, then: Approximately 95% of the people in our sample finished the 2009 Fictitious City Iron Man in between 7.48 and 15.90 hours and approximately 100% of the people in our sample finished the 2009 Fictitious City Iron Man in between 5.37 and 18.00 hours.

 

 

Case Four | Conditional Probability | Color Slot Machine

 

Using the color slot machine from Case One, compute the following conditional probabilities: Show full work and detail for full credit.

 

Pr{ “BR” Shows | Yellow Shows }

 

Sequence*

Probability

Prior(Yellow)

Joint(“BR” and Yellow)

RRBBRRYR

.11

.11

.11

RRGRBRRB

.10

 

 

BYGGYGBR

.14

.14

.14

GRGYBRGG

.10

.10

.10

YYYRYGRY

.25

.25

 

RYGRRBBY

.15

.15

 

YYBYBGRR

.15

.15

 

Total

1.00

0.90

0.34

 

 

Prior: Pr{ Yellow Shows }

Pr{ Yellow Shows } = Pr{ One of RRBBRRYR, BYGGYGBR, GRGYBRGG, YYYRYGRY, RYGRRBBY

or YYBYBGRR Shows } = Pr{ RRBBRRYR } + Pr{ BYGGYGBR } + Pr{ GRGYBRGG } +

Pr{ YYYRYGRY } + Pr{ RYGRRBBY } + Pr{ YYBYBGRR } = .11 + .14 + .10 + .25 + .15 + .15 = 0.90

 

Joint: Pr{ “BR” and Yellow Show }

Pr{ “BR” and Yellow Shows } = Pr{ One of RRBBRRYR, BYGGYGBR, GRGYBRGG Shows } =

Pr{ RRBBRRYR } + Pr{ BYGGYGBR } + Pr{ GRGYBRGG } = .11 + .14 + .10 = 0.34

 

Pr{ “BR” Shows | Yellow Shows } = Joint/Prior = Pr{ “BR” and Yellow Show }/ Pr{ Yellow Shows } = .34/.90

 

Pr{ “RBB” Shows  | Yellow Shows }

 

Sequence*

Probability

Prior(Yellow)

Joint(“RBB” and Yellow)

RRBBRRYR

.11

.11

.11

RRGRBRRB

.10

 

 

BYGGYGBR

.14

.14

 

GRGYBRGG

.10

.10

 

YYYRYGRY

.25

.25

 

RYGRRBBY

.15

.15

.15

YYBYBGRR

.15

.15

 

Total

1.00

0.90

0.26

 

 

Prior: Pr{ Yellow Shows }

Pr{ Yellow Shows } = Pr{ One of RRBBRRYR, BYGGYGBR, GRGYBRGG, YYYRYGRY, RYGRRBBY

or YYBYBGRR Shows } = Pr{ RRBBRRYR } + Pr{ BYGGYGBR } + Pr{ GRGYBRGG } +

Pr{ YYYRYGRY } + Pr{ RYGRRBBY } + Pr{ YYBYBGRR } = .11 + .14 + .10 + .25 + .15 + .15 = 0.90

 

Joint: Pr{ “RBB” and Yellow Show }

Pr{ “RBB” and Yellow Shows } = Pr{ RRBBRRYR or RYGRRBBY Shows } = Pr{ RRBBRRYR } +

Pr{ RYGRRBBY } = .11 + .15 = 0.26

 

Pr{ “RBB” Shows | Yellow Shows } = Joint/Prior = Pr{ “RBB” and Yellow Show }/ Pr{ Yellow Shows } = .26/.90

 

Pr{ Red Shows | Blue Shows }

 

Sequence*

Probability

Prior(Blue)

Joint(Red and Blue)

RRBBRRYR

.11

.11

.11

RRGRBRRB

.10

.10

.10

BYGGYGBR

.14

.14

.14

GRGYBRGG

.10

.10

.10

YYYRYGRY

.25

 

 

RYGRRBBY

.15

.15

.15

YYBYBGRR

.15

.15

.15

Total

1.00

0.75

0.75

 

Prior: Pr{ Blue Shows }

Pr{ Blue Shows } = Pr{ One of RRBBRRYR, RRGRBRRB, BYGGYGBR, GRGYBRGG, RYGRRBBY or

YYBYBGRR Shows } = Pr{ RBBRRYR } + Pr{ RRGRBRRB } + Pr{ BYGGYGBR } +

Pr{ GRGYBRGG } + Pr{ RYGRRBBY } + Pr{ YYBYBGRR } = .11 + .10 + .14 + .10 + .15 + .15 = 0.75

 

Joint: Pr{ Red and Blue Show }

Pr{ Red and Blue Show} = Pr{ One of RRBBRRYR, RRGRBRRB, BYGGYGBR, GRGYBRGG, RYGRRBBY or YYBYBGRR Shows } = Pr{ RBBRRYR } + Pr{ RRGRBRRB } + Pr{ BYGGYGBR } +

Pr{ GRGYBRGG } + Pr{ RYGRRBBY } + Pr{ YYBYBGRR } = .11 + .10 + .14 + .10 + .15 + .15 = 0.75

 

Pr{ Red Shows | Blue Shows } = Joint/Prior = Pr{ Red Shows }/ Pr{ Blue Shows } = .75/.75

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Means and Proportions

 

 Z(k) PROBRT ROBCENT

0.05   0.48006    0.03988

0.10   0.46017    0.07966

0.15   0.44038    0.11924

0.20   0.42074    0.15852

0.25   0.40129    0.19741

0.30   0.38209    0.23582

0.35   0.36317    0.27366

0.40   0.34458    0.31084

0.45   0.32636    0.34729

0.50   0.30854    0.38292

0.55   0.29116    0.41768

0.60   0.27425    0.45149

0.65   0.25785    0.48431

0.70   0.24196    0.51607

0.75   0.22663    0.54675

0.80   0.21186    0.57629

0.85   0.19766    0.60467

0.90   0.18406    0.63188

0.95   0.17106    0.65789

1.00   0.15866    0.68269

Z(k) PROBRT PROBCENT

1.05   0.14686    0.70628

1.10   0.13567    0.72867

1.15   0.12507    0.74986

1.20   0.11507    0.76986

1.25   0.10565    0.78870

1.30   0.09680    0.80640

1.35   0.08850    0.82298

1.40   0.08075    0.83849

1.45   0.07352    0.85294

1.50   0.06680    0.86639

1.55   0.06057    0.87886

1.60   0.05479    0.89040

1.65   0.04947    0.90106

1.70   0.04456    0.91087

1.75   0.04005    0.91988

1.80   0.03593    0.92814

1.85   0.03215    0.93569

1.90   0.02871    0.94257

1.95   0.02558    0.94882

2.00   0.02275    0.95450

Z(k) PROBRT PROBCENT

2.05   0.020182    0.95964

2.10   0.017864    0.96427

2.15   0.015778    0.96844

2.20   0.013903    0.97219

2.25   0.012224    0.97555

2.30   0.010724    0.97855

2.35   0.009387    0.98123

2.40   0.008198    0.98360

2.45   0.007143    0.98571

2.50   0.006210    0.98758

2.55   0.005386    0.98923

2.60   0.004661    0.99068

2.65   0.004025    0.99195

2.70   .0034670    0.99307

2.75   .0029798    0.99404

2.80   .0025551    0.99489

2.85   .0021860    0.99563

2.90   .0018658    0.99627

2.95   .0015889    0.99682

3.00   .0013499    0.99730