Summaries
13th
September 2010
Session 1.7
Marginal, Joint and
Conditional Probabilities
Suppose that we have
fair dice: d4 with face values {1,2,3,4}, d6 with face values {1,2,3,4,5,6} and
d8 with face values {1,2,3,4,5,6,7,8}. Our
experiment consists of first randomly selecting one of the dice and then
tossing that die and noting the face value.
The first stage
probabilities:
Pr{Select d4} = 1/3( = P4)
Pr{Select d6} = 1/3( = P6)
Pr{Select d8} = 1/3( = P8)
The conditional probabilities:
Pr{1 shows | d4 selected} =
1/4
Pr{2 shows | d4 selected} =
1/4
Pr{3 shows | d4 selected} =
1/4
Pr{4 shows | d4 selected} =
1/4
Pr{1 shows | d6 selected} =
1/6
Pr{2 shows | d6 selected} =
1/6
Pr{3 shows | d6 selected} =
1/6
Pr{4 shows | d6 selected} =
1/6
Pr{5 shows | d6 selected} =
1/6
Pr{6 shows | d6 selected} =
1/6
Pr{1 shows | d8 selected} =
1/8
Pr{2 shows | d8 selected} =
1/8
Pr{3 shows | d8 selected} =
1/8
Pr{4 shows | d8 selected} =
1/8
Pr{5 shows | d8 selected} =
1/8
Pr{6 shows | d8 selected} =
1/8
Pr{7 shows | d8 selected} =
1/8
Pr{8 shows | d8 selected} =
1/8
The joint
probabilities
Pr{1 shows} = Pr{1 shows | d4
selected}*Pr{d4
selected} + Pr{1
shows | d6 selected}*Pr{d6
selected} + Pr{1
shows | d8 selected}*Pr{d8
selected} = (1/3)*(1/4) + (1/3)*(1/6) + (1/3)*(1/8) = (1/3)*(13/24) =
13/72 ≈ 0.1806
Pr{2 shows} = Pr{2 shows | d4
selected}*Pr{d4 selected} + Pr{2 shows | d6 selected}*Pr{d6 selected} + Pr{2
shows | d8 selected}*Pr{d8 selected} = (1/3)*(1/4) + (1/3)*(1/6) + (1/3)*(1/8)
= (1/3)*(13/24) = 13/72 ≈ 0.1806
Pr{3 shows} = Pr{3 shows | d4
selected}*Pr{d4 selected} + Pr{3 shows | d6 selected}*Pr{d6 selected} + Pr{3
shows | d8 selected}*Pr{d8 selected} = (1/3)*(1/4) + (1/3)*(1/6) + (1/3)*(1/8) =
(1/3)*(13/24) = 13/72 ≈ 0.1806
Pr{4 shows} = Pr{4 shows | d4
selected}*Pr{d4 selected} + Pr{4 shows | d6 selected}*Pr{d6 selected} + Pr{4
shows | d8 selected}*Pr{d8 selected} = (1/3)*(1/4) + (1/3)*(1/6) + (1/3)*(1/8)
= (1/3)*(13/24) = 13/72 ≈ 0.1806
Pr{5 shows} = Pr{5 shows | d6 selected}*Pr{d6
selected} + Pr{5 shows | d8 selected}*Pr{d8 selected} = (1/3)*(1/6) +
(1/3)*(1/8) = (1/3)*(7/24) = 7/72 ≈ 0.0972
Pr{6 shows} = Pr{6 shows | d6 selected}*Pr{d6
selected} + Pr{6 shows | d8 selected}*Pr{d8 selected} = (1/3)*(1/6) +
(1/3)*(1/8) = (1/3)*(7/24) = 7/72 ≈ 0.0972
Pr{7 shows} = Pr{7 shows | d8 selected}*Pr{d8
selected} = (1/3)*(1/8) = 3/72 ≈ 0.0417
Pr{8 shows} = Pr{8 shows | d8 selected}*Pr{d8
selected} = (1/3)*(1/8) = 3/72 ≈ 0.0417
Sample Tables
Compare sample
proportions (p) to probabilities (P).
6:30
Sample 1 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
7 |
0.104477612 |
1 |
13 |
0.2363636 |
1 |
23 |
0.2948718 |
43 |
0.215 |
0.1806 |
2 |
10 |
0.149253731 |
2 |
13 |
0.2363636 |
2 |
17 |
0.2179487 |
40 |
0.2 |
0.1806 |
3 |
9 |
0.134328358 |
3 |
8 |
0.1454545 |
3 |
15 |
0.1923077 |
32 |
0.16 |
0.1806 |
4 |
5 |
0.074626866 |
4 |
6 |
0.1090909 |
4 |
23 |
0.2948718 |
34 |
0.17 |
0.1806 |
5 |
4 |
0.059701493 |
5 |
12 |
0.2181818 |
|
|
16 |
0.08 |
0.0972 |
|
6 |
11 |
0.164179104 |
6 |
3 |
0.0545455 |
|
|
14 |
0.07 |
0.0972 |
|
7 |
13 |
0.194029851 |
|
|
|
|
|
13 |
0.065 |
0.0417 |
|
8 |
8 |
0.119402985 |
|
|
|
|
|
8 |
0.04 |
0.0417 |
|
Total |
67 |
1 |
Total |
55 |
1 |
Total |
78 |
1 |
200 |
1 |
1 |
Sample 2 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
7 |
0.112903226 |
1 |
6 |
0.0895522 |
1 |
9 |
0.1267606 |
22 |
0.11 |
0.1806 |
2 |
8 |
0.129032258 |
2 |
8 |
0.119403 |
2 |
24 |
0.3380282 |
40 |
0.2 |
0.1806 |
3 |
5 |
0.080645161 |
3 |
19 |
0.2835821 |
3 |
18 |
0.2535211 |
42 |
0.21 |
0.1806 |
4 |
6 |
0.096774194 |
4 |
12 |
0.1791045 |
4 |
20 |
0.2816901 |
38 |
0.19 |
0.1806 |
5 |
6 |
0.096774194 |
5 |
11 |
0.1641791 |
|
|
17 |
0.085 |
0.0972 |
|
6 |
11 |
0.177419355 |
6 |
11 |
0.1641791 |
|
|
22 |
0.11 |
0.0972 |
|
7 |
8 |
0.129032258 |
|
|
|
|
|
8 |
0.04 |
0.0417 |
|
8 |
11 |
0.177419355 |
|
|
|
|
|
11 |
0.055 |
0.0417 |
|
Total |
62 |
1 |
Total |
67 |
1 |
Total |
71 |
1 |
200 |
1 |
1 |
Sample 3 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
4 |
0.06779661 |
1 |
14 |
0.1891892 |
1 |
17 |
0.2833333 |
35 |
0.1813472 |
0.1806 |
2 |
3 |
0.050847458 |
2 |
12 |
0.1621622 |
2 |
21 |
0.35 |
36 |
0.1865285 |
0.1806 |
3 |
7 |
0.118644068 |
3 |
11 |
0.1486486 |
3 |
8 |
0.1333333 |
26 |
0.134715 |
0.1806 |
4 |
7 |
0.118644068 |
4 |
13 |
0.1756757 |
4 |
14 |
0.2333333 |
34 |
0.1761658 |
0.1806 |
5 |
7 |
0.118644068 |
5 |
11 |
0.1486486 |
|
|
18 |
0.0932642 |
0.0972 |
|
6 |
7 |
0.118644068 |
6 |
13 |
0.1756757 |
|
|
20 |
0.1036269 |
0.0972 |
|
7 |
13 |
0.220338983 |
|
|
|
|
|
13 |
0.0673575 |
0.0417 |
|
8 |
11 |
0.186440678 |
|
|
|
|
|
11 |
0.0569948 |
0.0417 |
|
Total |
59 |
1 |
Total |
74 |
1 |
Total |
60 |
1 |
193 |
1 |
1 |
Sample 4 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
9 |
0.140625 |
1 |
9 |
0.1384615 |
1 |
15 |
0.2112676 |
33 |
0.165 |
0.1806 |
2 |
6 |
0.09375 |
2 |
12 |
0.1846154 |
2 |
21 |
0.2957746 |
39 |
0.195 |
0.1806 |
3 |
7 |
0.109375 |
3 |
7 |
0.1076923 |
3 |
24 |
0.3380282 |
38 |
0.19 |
0.1806 |
4 |
6 |
0.09375 |
4 |
14 |
0.2153846 |
4 |
11 |
0.1549296 |
31 |
0.155 |
0.1806 |
5 |
7 |
0.109375 |
5 |
13 |
0.2 |
|
|
20 |
0.1 |
0.0972 |
|
6 |
10 |
0.15625 |
6 |
10 |
0.1538462 |
|
|
20 |
0.1 |
0.0972 |
|
7 |
10 |
0.15625 |
|
|
|
|
|
10 |
0.05 |
0.0417 |
|
8 |
9 |
0.140625 |
|
|
|
|
|
9 |
0.045 |
0.0417 |
|
Total |
64 |
1 |
Total |
65 |
1 |
Total |
71 |
1 |
200 |
1 |
1 |
Sample 5 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
5 |
0.080645161 |
1 |
8 |
0.1269841 |
1 |
22 |
0.2933333 |
35 |
0.175 |
0.1806 |
2 |
9 |
0.14516129 |
2 |
9 |
0.1428571 |
2 |
17 |
0.2266667 |
35 |
0.175 |
0.1806 |
3 |
13 |
0.209677419 |
3 |
13 |
0.2063492 |
3 |
10 |
0.1333333 |
36 |
0.18 |
0.1806 |
4 |
10 |
0.161290323 |
4 |
9 |
0.1428571 |
4 |
26 |
0.3466667 |
45 |
0.225 |
0.1806 |
5 |
7 |
0.112903226 |
5 |
11 |
0.1746032 |
|
|
18 |
0.09 |
0.0972 |
|
6 |
2 |
0.032258065 |
6 |
13 |
0.2063492 |
|
|
15 |
0.075 |
0.0972 |
|
7 |
9 |
0.14516129 |
|
|
|
|
|
9 |
0.045 |
0.0417 |
|
8 |
7 |
0.112903226 |
|
|
|
|
|
7 |
0.035 |
0.0417 |
|
Total |
62 |
1 |
Total |
63 |
1 |
Total |
75 |
1 |
200 |
1 |
1 |
Sample 6 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
3 |
0.046875 |
1 |
14 |
0.2413793 |
1 |
21 |
0.2692308 |
38 |
0.19 |
0.1806 |
2 |
10 |
0.15625 |
2 |
13 |
0.2241379 |
2 |
18 |
0.2307692 |
41 |
0.205 |
0.1806 |
3 |
14 |
0.21875 |
3 |
9 |
0.1551724 |
3 |
21 |
0.2692308 |
44 |
0.22 |
0.1806 |
4 |
14 |
0.21875 |
4 |
6 |
0.1034483 |
4 |
18 |
0.2307692 |
38 |
0.19 |
0.1806 |
5 |
9 |
0.140625 |
5 |
7 |
0.1206897 |
|
|
16 |
0.08 |
0.0972 |
|
6 |
7 |
0.109375 |
6 |
9 |
0.1551724 |
|
|
16 |
0.08 |
0.0972 |
|
7 |
3 |
0.053571429 |
|
|
|
|
|
3 |
0.015 |
0.0417 |
|
8 |
4 |
0.0625 |
|
|
|
|
|
4 |
0.02 |
0.0417 |
|
Total |
64 |
1.006696429 |
Total |
58 |
1 |
Total |
78 |
1 |
200 |
1 |
1 |
Pooled |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
35 |
0.092592593 |
1 |
64 |
0.1675393 |
1 |
107 |
0.2471132 |
206 |
0.1726739 |
0.1806 |
2 |
46 |
0.121693122 |
2 |
67 |
0.1753927 |
2 |
118 |
0.2725173 |
231 |
0.1936295 |
0.1806 |
3 |
55 |
0.145502646 |
3 |
67 |
0.1753927 |
3 |
96 |
0.221709 |
218 |
0.1827326 |
0.1806 |
4 |
48 |
0.126984127 |
4 |
60 |
0.1570681 |
4 |
112 |
0.2586605 |
220 |
0.1844091 |
0.1806 |
5 |
40 |
0.105820106 |
5 |
65 |
0.1701571 |
|
|
105 |
0.0880134 |
0.0972 |
|
6 |
48 |
0.126984127 |
6 |
59 |
0.1544503 |
|
|
107 |
0.0896899 |
0.0972 |
|
7 |
56 |
0.148148148 |
|
|
|
|
|
56 |
0.0469405 |
0.0417 |
|
8 |
50 |
0.132275132 |
|
|
|
|
|
50 |
0.0419111 |
0.0417 |
|
Total |
378 |
1 |
Total |
382 |
1 |
Total |
433 |
1 |
1193 |
1 |
1 |
8:00
Sample 1 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
6 |
0.08108108 |
1 |
12 |
0.20689655 |
1 |
19 |
0.26760563 |
37 |
0.18226601 |
0.1806 |
2 |
9 |
0.12162162 |
2 |
8 |
0.13793103 |
2 |
19 |
0.26760563 |
36 |
0.1773399 |
0.1806 |
3 |
11 |
0.14864865 |
3 |
8 |
0.13793103 |
3 |
15 |
0.21126761 |
34 |
0.16748768 |
0.1806 |
4 |
10 |
0.13513514 |
4 |
14 |
0.24137931 |
4 |
18 |
0.25352113 |
42 |
0.20689655 |
0.1806 |
5 |
12 |
0.16216216 |
5 |
7 |
0.12068966 |
|
|
19 |
0.09359606 |
0.0972 |
|
6 |
10 |
0.13513514 |
6 |
9 |
0.15517241 |
|
|
19 |
0.09359606 |
0.0972 |
|
7 |
11 |
0.14864865 |
|
|
|
|
|
11 |
0.05418719 |
0.0417 |
|
8 |
5 |
0.06756757 |
|
|
|
|
|
5 |
0.02463054 |
0.0417 |
|
Total |
74 |
1 |
Total |
58 |
1 |
Total |
71 |
1 |
203 |
1 |
1 |
Sample 2 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
5 |
0.06944444 |
1 |
6 |
0.10169492 |
1 |
21 |
0.30434783 |
32 |
0.16 |
0.1806 |
2 |
15 |
0.20833333 |
2 |
9 |
0.15254237 |
2 |
16 |
0.23188406 |
40 |
0.2 |
0.1806 |
3 |
4 |
0.05555556 |
3 |
10 |
0.16949153 |
3 |
15 |
0.2173913 |
29 |
0.145 |
0.1806 |
4 |
5 |
0.06944444 |
4 |
8 |
0.13559322 |
4 |
17 |
0.24637681 |
30 |
0.15 |
0.1806 |
5 |
15 |
0.20833333 |
5 |
11 |
0.18644068 |
|
|
26 |
0.13 |
0.0972 |
|
6 |
8 |
0.11111111 |
6 |
15 |
0.25423729 |
|
|
23 |
0.115 |
0.0972 |
|
7 |
13 |
0.18055556 |
|
|
|
|
|
13 |
0.065 |
0.0417 |
|
8 |
7 |
0.09722222 |
|
|
|
|
|
7 |
0.035 |
0.0417 |
|
Total |
72 |
1 |
Total |
59 |
1 |
Total |
69 |
1 |
200 |
1 |
1 |
Sample 3 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
11 |
0.10784314 |
1 |
15 |
0.25862069 |
1 |
9 |
0.225 |
35 |
0.175 |
0.1806 |
2 |
15 |
0.14705882 |
2 |
10 |
0.17241379 |
2 |
12 |
0.3 |
37 |
0.185 |
0.1806 |
3 |
22 |
0.21568627 |
3 |
8 |
0.13793103 |
3 |
8 |
0.2 |
38 |
0.19 |
0.1806 |
4 |
15 |
0.14705882 |
4 |
10 |
0.17241379 |
4 |
11 |
0.275 |
36 |
0.18 |
0.1806 |
5 |
10 |
0.09803922 |
5 |
4 |
0.06896552 |
|
|
14 |
0.07 |
0.0972 |
|
6 |
10 |
0.09803922 |
6 |
11 |
0.18965517 |
|
|
21 |
0.105 |
0.0972 |
|
7 |
12 |
0.11764706 |
|
|
|
|
|
12 |
0.06 |
0.0417 |
|
8 |
7 |
0.06862745 |
|
|
|
|
|
7 |
0.035 |
0.0417 |
|
Total |
102 |
1 |
Total |
58 |
1 |
Total |
40 |
1 |
200 |
1 |
1 |
Sample 4 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
7 |
0.12068966 |
1 |
11 |
0.14864865 |
1 |
18 |
0.26086957 |
36 |
0.17910448 |
0.1806 |
2 |
11 |
0.18965517 |
2 |
12 |
0.16216216 |
2 |
14 |
0.20289855 |
37 |
0.1840796 |
0.1806 |
3 |
6 |
0.10344828 |
3 |
17 |
0.22972973 |
3 |
18 |
0.26086957 |
41 |
0.2039801 |
0.1806 |
4 |
6 |
0.10344828 |
4 |
13 |
0.17567568 |
4 |
19 |
0.27536232 |
38 |
0.18905473 |
0.1806 |
5 |
10 |
0.17241379 |
5 |
9 |
0.12162162 |
|
|
19 |
0.09452736 |
0.0972 |
|
6 |
10 |
0.17241379 |
6 |
12 |
0.16216216 |
|
|
22 |
0.10945274 |
0.0972 |
|
7 |
4 |
0.06896552 |
|
|
|
|
|
4 |
0.0199005 |
0.0417 |
|
8 |
4 |
0.06896552 |
|
|
|
|
|
4 |
0.0199005 |
0.0417 |
|
Total |
58 |
1 |
Total |
74 |
1 |
Total |
69 |
1 |
201 |
1 |
1 |
Sample 5 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
7 |
0.11111111 |
1 |
7 |
0.10769231 |
1 |
20 |
0.26666667 |
34 |
0.16748768 |
0.1806 |
2 |
5 |
0.07936508 |
2 |
10 |
0.15384615 |
2 |
25 |
0.33333333 |
40 |
0.19704433 |
0.1806 |
3 |
13 |
0.20634921 |
3 |
13 |
0.2 |
3 |
13 |
0.17333333 |
39 |
0.19211823 |
0.1806 |
4 |
7 |
0.11111111 |
4 |
6 |
0.09230769 |
4 |
17 |
0.22666667 |
30 |
0.14778325 |
0.1806 |
5 |
10 |
0.15873016 |
5 |
19 |
0.29230769 |
|
|
29 |
0.14285714 |
0.0972 |
|
6 |
9 |
0.14285714 |
6 |
10 |
0.15384615 |
|
|
19 |
0.09359606 |
0.0972 |
|
7 |
5 |
0.07936508 |
|
|
|
|
|
5 |
0.02463054 |
0.0417 |
|
8 |
7 |
0.11111111 |
|
|
|
|
|
7 |
0.03448276 |
0.0417 |
|
Total |
63 |
1 |
Total |
65 |
1 |
Total |
75 |
1 |
203 |
1 |
1 |
Sample 6 |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
12 |
0.17910448 |
1 |
9 |
0.13636364 |
1 |
19 |
0.27536232 |
40 |
0.1980198 |
0.1806 |
2 |
10 |
0.14925373 |
2 |
7 |
0.10606061 |
2 |
20 |
0.28985507 |
37 |
0.18316832 |
0.1806 |
3 |
10 |
0.14925373 |
3 |
14 |
0.21212121 |
3 |
17 |
0.24637681 |
41 |
0.2029703 |
0.1806 |
4 |
4 |
0.05970149 |
4 |
10 |
0.15151515 |
4 |
13 |
0.1884058 |
27 |
0.13366337 |
0.1806 |
5 |
4 |
0.05970149 |
5 |
10 |
0.15151515 |
|
|
14 |
0.06930693 |
0.0972 |
|
6 |
4 |
0.05970149 |
6 |
16 |
0.24242424 |
|
|
20 |
0.0990099 |
0.0972 |
|
7 |
13 |
0.22413793 |
|
|
|
|
|
13 |
0.06435644 |
0.0417 |
|
8 |
10 |
0.14925373 |
|
|
|
|
|
10 |
0.04950495 |
0.0417 |
|
Total |
67 |
1.03010808 |
Total |
66 |
1 |
Total |
69 |
1 |
202 |
1 |
1 |
Pooled |
D8 |
D6 |
D4 |
Joint |
|||||||
Face Value |
n |
p |
Face Value |
n |
p |
Face Value |
n |
p |
n |
p |
P |
1 |
48 |
0.11009174 |
1 |
60 |
0.15789474 |
1 |
106 |
0.2697201 |
214 |
0.17700579 |
0.1806 |
2 |
65 |
0.14908257 |
2 |
56 |
0.14736842 |
2 |
106 |
0.2697201 |
227 |
0.18775848 |
0.1806 |
3 |
66 |
0.15137615 |
3 |
70 |
0.18421053 |
3 |
86 |
0.21882952 |
222 |
0.18362283 |
0.1806 |
4 |
47 |
0.10779817 |
4 |
61 |
0.16052632 |
4 |
95 |
0.24173028 |
203 |
0.16790736 |
0.1806 |
5 |
61 |
0.13990826 |
5 |
60 |
0.15789474 |
|
|
121 |
0.10008271 |
0.0972 |
|
6 |
51 |
0.11697248 |
6 |
73 |
0.19210526 |
|
|
124 |
0.1025641 |
0.0972 |
|
7 |
58 |
0.13302752 |
|
|
|
|
|
58 |
0.04797353 |
0.0417 |
|
8 |
40 |
0.09174312 |
|
|
|
|
|
40 |
0.03308519 |
0.0417 |
|
Total |
436 |
1 |
Total |
380 |
1 |
Total |
393 |
1 |
1209 |
1 |
1 |
Conditional Probability
Conditional = Joint / Prior
Pr{A|B} = Pr{A∩B} / Pr{B}
How much of B is tied up in A ?
Case Study 1.11
Conditional Probability
Case Study Description: Compute
conditional probabilities associated with the color sequence experiment.
Suppose that we have a special box -
each time we press a button on the box, it prints out a sequence of colors, in order
- it prints four colors at a time. Suppose the box follows the following
Probabilities for each Color Sequence:
Color Sequence |
Probability CS Prints Out |
BBBB |
.10 = 10% |
BGGB |
.25 = 25% |
RGGR |
.05 = 05% |
YYYY |
.30 = 30% |
BYRG |
.15 = 15% |
RYYB |
.15 = 15% |
Total |
1.00 = 100% |
Let's define the experiment: We push
the button, and then the box prints out exactly one (1) of the above listed
color sequences. We then note the resulting (printed out) color sequence.
Compute Pr{
blue shows 1st | blue shows 4th };
Pr{ B 1st and B 4th } = Pr{
exactly one of BBBB, BGGB shows } = Pr{ BBBB} + Pr{BGGB} =.10 + .25 = .35
Pr{ B 4th } = Pr{ exactly one of BBBB,
BGGB, RYYB shows } = Pr{BBBB} + Pr{BGGB} +
Pr{RYYB} = .10+.25+.15 = .50
So, Pr{
B 1st | B 4th } = .35/ .50=
.70
Compute Pr{
green shows 2nd or 3rd | yellow shows };
Pr{ G 2nd or 3rd and Y
shows } = 0, since no sequences meet this requirement
Pr{ Y shows } = Pr{ exactly
one of YYYY, BYRG, RYYB shows } = Pr{YYYY}+ Pr{BYRG}+ Pr{RYYB} = .30+.15+.15 =
.60
So, Pr{
G 2nd or 3rd | Y shows } = 0 / .60= 0
Compute Pr{
yellow shows | red shows }.
Pr{
Y and R show } = Pr{ exactly one of BYRG, RYYB shows } = Pr{BYRG}+ Pr{RYYB
} = .15 + .15 = .30
Pr{ R
shows } = Pr{ exactly one of RGGR, BYRG, RYYB shows } = Pr{RGGR}+ Pr{BYRG}+
Pr{RYYB } = .05+.15+.15 = .35
So, Pr{
Y shows | R shows } = .30/.35 = 6/7 = .8571
Case Study 1.12
Conditional Probability
II: Pair of Dice
Case Description: Compute
conditional probabilities.
Suppose we have a pair of fair dice:
d4(faces 1,2,3,4), d6(faces 1,2,3,4,5,6). In our experiment, we toss this pair
of dice, and note the face value from each die. For simplicity, we write the
outcome as (d4 result, d6 result). Assume that the dice operate independently
and separately.
Case Objectives:
Identify the simple (basic) events. Compute (and justify) a probability for each simple event.
As before, Pr{ ( any d4 face,
any d6 face) } = Pr{ any d4 face }*Pr{ any d6 face } = (1/4)*(1/6) = 1/24
We have 24 equally likely
pairs.
|
1 |
2 |
3 |
4 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
6 |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
Suppose we observe the sum of the
faces in the pair of dice. Identify the possible values of
this sum, and compute (and justify) a probability for each value.
Now for the sums:
|
1 |
2 |
3 |
4 |
1 |
(1,1) @ 2 |
(2,1) @ 3 |
(3,1) @ 4 |
(4,1) @ 5 |
2 |
(1,2) @ 3 |
(2,2) @ 4 |
(3,2) @ 5 |
(4,2) @ 6 |
3 |
(1,3) @ 4 |
(2,3) @ 5 |
(3,3) @ 6 |
(4,3) @ 7 |
4 |
(1,4) @ 5 |
(2,4) @ 6 |
(3,4) @ 7 |
(4,4) @ 8 |
5 |
(1,5) @ 6 |
(2,5) @ 7 |
(3,5) @ 8 |
(4,5) @ 9 |
6 |
(1,6) @ 7 |
(2,6) @ 8 |
(3,6) @ 9 |
(4,6) @ 10 |
Compute the conditional probability Pr
Pr
Pr
Pr
So, Pr
Continuing,…
|
1 |
2 |
3 |
4 |
1 |
(1,1) @ 2 |
(2,1) @ 3 |
(3,1) @ 4 |
(4,1) @ 5 |
2 |
(1,2) @ 3 |
(2,2) @ 4 |
(3,2) @ 5 |
(4,2) @ 6 |
3 |
(1,3) @ 4 |
(2,3) @ 5 |
(3,3) @ 6 |
(4,3) @ 7 |
4 |
(1,4) @ 5 |
(2,4) @ 6 |
(3,4) @ 7 |
(4,4) @ 8 |
5 |
(1,5) @ 6 |
(2,5) @ 7 |
(3,5) @ 8 |
(4,5) @ 9 |
6 |
(1,6) @ 7 |
(2,6) @ 8 |
(3,6) @ 9 |
(4,6) @ 10 |
Compute the conditional probability Pr
Pr
Pr
Pr
So, Pr
HR1 – Summer Version A,
Case Three
Case
Three | Color Slot Machine | Conditional Probabilities
Here is our slot machine – on each trial,
it produces a 10-color sequence, using the table below:
Sequence* |
Probability |
RRBBRRYRRR |
.10 |
RRGGRGBRRB |
.10 |
BBYYGGYGBR |
.15 |
GRRGGYBRGG |
.10 |
BGYGYRYGYY |
.25 |
RRYYGRRBBY |
.10 |
YYGBYYBGRR |
.20 |
Total |
1.00 |
*B-Blue, G-Green, R-Red, Y-Yellow,
Sequence is numbered from left to right: (1st 2nd 3rd
4th 5th6th7th 8th 9th
10th )
Compute
the following conditional probabilities:
Pr
Sequence* |
Probability |
RRBBRRYRRR |
.10 |
RRGGRGBRRB |
.10 |
BBYYGGYGBR |
.15 |
GRRGGYBRGG |
.10 |
BGYGYRYGYY |
.25 |
RRYYGRRBBY |
.10 |
YYGBYYBGRR |
.20 |
Total |
1.00 |
Pr
Pr
Sequence* |
Probability |
|
|
Total |
0 |
Pr
Pr
Pr
Sequence* |
Probability |
RRBBRRYRRR |
.10 |
RRGGRGBRRB |
.10 |
BBYYGGYGBR |
.15 |
GRRGGYBRGG |
.10 |
Total |
.45 |
Pr
Pr
Pr
Sequence* |
Probability |
RRGGRGBRRB |
.10 |
BBYYGGYGBR |
.15 |
GRRGGYBRGG |
.10 |
Total |
.35 |
Pr
Pr
Pr
Pr
Sequence* |
Probability |
RRGGRGBRRB |
.10 |
BBYYGGYGBR |
.15 |
GRRGGYBRGG |
.10 |
BGYGYRYGYY |
.25 |
RRYYGRRBBY |
.10 |
YYGBYYBGRR |
.20 |
Total |
.90 |
Pr
Pr
Pr
Sequence* |
Probability |
RRGGRGBRRB |
.10 |
BBYYGGYGBR |
.15 |
GRRGGYBRGG |
.10 |
BGYGYRYGYY |
.25 |
RRYYGRRBBY |
.10 |
YYGBYYBGRR |
.20 |
Total |
.90 |
Pr
Pr
Pr
HR1 – Spring
2008, Case Four
Case Four: Color Slot Machine, Computation of Conditional
Probabilities
Here is our slot machine
– on each trial, it produces a 10-color sequence, using the table below:
Sequence* |
Probability |
RRBBR RYRRB |
.10 |
RRGGRGBRRB |
.10 |
BBYYRGYGBR |
.15 |
GRRGRGBRGB |
.10 |
BGYGYRYGYY |
.25 |
RRGYGRRBBB |
.10 |
YYGBYYBGRR |
.20 |
Total |
1.00 |
*B-Blue, G-Green, R-Red,
Y-Yellow, Sequence is numbered as 1st to 6th , from left
to right: (1st 2nd 3rd 4th 5th6th7th
8th 9th 10th )
Compute the following conditional probabilities:
1. Pr
Pr
Pr
Sequence* |
Probability |
RRBBR RYRRB |
.10 |
BBYYRGYGBR |
.15 |
BGYGYRYGYY |
.25 |
Total |
0.50 |
Pr
Pr
Sequence* |
Probability |
RRBBR RYRRB |
.10 |
Total |
0.10 |
Pr
Pr
2. Pr
Pr
Pr
Sequence* |
Probability |
RRBBR RYRRB |
.10 |
RRGGRGBRRB |
.10 |
RRGYGRRBBB |
.10 |
Total |
0.30 |
Pr
Sequence* |
Probability |
RRGGRGBRRB |
.10 |
RRGYGRRBBB |
.10 |
Total |
0.20 |
Pr
Pr
3. Pr
Pr
Pr
Sequence* |
Probability |
RRBBR RYRRB |
.10 |
RRGGRGBRRB |
.10 |
BBYYRGYGBR |
.15 |
GRRGRGBRGB |
.10 |
BGYGYRYGYY |
.25 |
RRGYGRRBBB |
.10 |
YYGBYYBGRR |
.20 |
Total |
1.00 |
Pr
Sequence* |
Probability |
RRBBR RYRRB |
.10 |
BBYYRGYGBR |
.15 |
BGYGYRYGYY |
.25 |
RRGYGRRBBB |
.10 |
YYGBYYBGRR |
.20 |
Total |
0.80 |
Pr
Pr
Case Study 1.13
Conditional Probability
Case Description: Compute
conditional probabilities for pairs of draws (without replacement).
Here is our bowl, in tabular form:
Color |
# in Bowl |
Proportion
of Bowl |
Blue |
5 |
5/9 |
Green |
3 |
3/9 |
Red |
1 |
1/9 |
Total |
9 |
1 |
Suppose that on each trial of this
experiment that we make two (2) draws without replacement from the bowl.
Compute Pr
Here is our bowl, after "red
shows 1st", in tabular form:
Color |
# in Bowl – Before 1st
Draw |
#
in Bowl – After 1st Draw |
Blue |
5 |
5 – 0 = 5 |
Green |
3 |
3 – 0 = 3 |
Red |
1 |
1 – 1 = 0 |
Total |
9 |
8 |
With the red chip out of
the bowl, 3 of the 8 surviving chips are green. So, Pr
Compute Pr
Pr
Compute Pr
Here is our bowl, after "blue
shows 1st", in tabular form:
Color |
# in Bowl – Before 1st
Draw |
#
in Bowl – After 1st Draw |
Blue |
5 |
5 – 1 = 4 |
Green |
3 |
3 – 0 = 3 |
Red |
1 |
1 – 0 = 1 |
Total |
9 |
8 |
Pr
HR1 – Fall
2004, Case Three
Case Three
Conditional Probability
Color Bowl/Draws without
Replacement
We have a bowl
containing the following colors and counts of balls (color@count):
Blue @ 5, Green @ 1, Red @ 2, Yellow @ 3
Each trial of our
experiment consists of three (3) draws without replacement from the bowl.
Compute these directly.
Color |
Count |
B |
5 |
G |
1 |
R |
2 |
Y |
3 |
Total |
11 |
Pr
Color |
Count |
B |
5 |
G |
1 |
R |
2 |
Y |
3 |
Total |
11 |
ß green
shows 1st
Color |
Count |
B |
5 |
G |
0 |
R |
2 |
Y |
3 |
Total |
10 |
Pr
Pr
Color |
Count |
B |
5 |
G |
1 |
R |
2 |
Y |
3 |
Total |
11 |
ß green
shows 1st
Color |
Count |
B |
5 |
G |
0 |
R |
2 |
Y |
3 |
Total |
10 |
ß blue
shows 2nd
Color |
Count |
B |
4 |
G |
0 |
R |
2 |
Y |
3 |
Total |
9 |
Pr
Pr
Color |
Count |
B |
5 |
G |
1 |
R |
2 |
Y |
3 |
Total |
11 |
ß green
shows 1st
Color |
Count |
B |
5 |
G |
0 |
R |
2 |
Y |
3 |
Total |
10 |
ß red
shows 2nd
Color |
Count |
B |
5 |
G |
0 |
R |
1 |
Y |
3 |
Total |
9 |
Pr