1st November 2010
Session 3.3
Population Inference
Confidence Intervals – Proportion
Confidence Intervals – Proportion
Population Level
E = Event
= Definition of Event of Interest
P = Pr{E} = True
Probability for Event E
Sample Level
e = Number
of Observed Events in Sample
n = Number
of Observations / Sample Size Number of Trials
p = e/n =
Proportion of Total Sample Observing Event E
sdp = sqrt(p*(1 –
p)/n) = Sample Standard Error for the Proportion
Z =
Confidence Coefficient
Confidence
Interval is given as [ (p – Z*sdp), (p + Z*sdp) ]
Validation of the Confidence
Interval Process – Population Proportion (Current: from Summer
2010)
Track the event “Face Value Shows 3
or 4” in n=50 tosses of a fair, six-sided dice (face values 1,2,3,4,5,6 per face).
We know that P=Pr{Face Value
Shows as 3 or 4} = Pr{Face Value Shows as 3} + Pr{Face Value Shows as 4} =
(1/6) + (1/6) = 2/6 = 1/3 ≈
0.3333, so we can check our intervals for accuracy. In 20 intervals, we have zero failures and 20
successes, yielding a failure rate of 0% (versus 5% ,
as expected).
Samples
0 Miss in 20 Intervals
(0%), 20 Hits in 20 Intervals (100%)
Sample |
3 or 4 Shows |
p3or4 |
sdp = sqrt(p*(1-p)/50) |
Lower95 = p - 2*sdp |
Upper95 = p - 2*sdp |
P3or4 |
Status |
Perfect |
16.6667 |
0.333333 |
0.066667 |
0.2 |
0.466667 |
0.333333 |
Perfect |
#1 |
17 |
17/50 = 0.34 |
sqrt((17/50)*(33/50)/50) ≈ .066993 |
(17/50) - 2*sqrt((17/50)*(33/50)/50)
≈0.206015 |
0.473985 |
0.333333 |
Hit – CI contains
0.3333 |
#2 |
13 |
0.26 |
0.062032 |
0.135936 |
0.384064 |
0.333333 |
Hit – CI contains
0.3333 |
#3 |
14 |
0.28 |
0.063498 |
0.153004 |
0.406996 |
0.333333 |
Hit – CI contains
0.3333 |
#4 |
15 |
0.3 |
0.064807 |
0.170385 |
0.429615 |
0.333333 |
Hit – CI contains
0.3333 |
#5 |
17 |
0.34 |
0.066993 |
0.206015 |
0.473985 |
0.333333 |
Hit – CI contains
0.3333 |
#6 |
15 |
0.3 |
0.064807 |
0.170385 |
0.429615 |
0.333333 |
Hit – CI contains
0.3333 |
#7 |
14 |
0.28 |
0.063498 |
0.153004 |
0.406996 |
0.333333 |
Hit – CI contains
0.3333 |
#8 |
17 |
0.34 |
0.066993 |
0.206015 |
0.473985 |
0.333333 |
Hit – CI contains
0.3333 |
#9 |
13 |
0.26 |
0.062032 |
0.135936 |
0.384064 |
0.333333 |
Hit – CI contains
0.3333 |
#10 |
17 |
0.34 |
0.066993 |
0.206015 |
0.473985 |
0.333333 |
Hit – CI contains
0.3333 |
#11 |
18 |
0.36 |
0.067882 |
0.224235 |
0.495765 |
0.333333 |
Hit – CI contains
0.3333 |
#12 |
13 |
0.26 |
0.062032 |
0.135936 |
0.384064 |
0.333333 |
Hit – CI contains
0.3333 |
#13 |
19 |
0.38 |
0.068644 |
0.242712 |
0.517288 |
0.333333 |
Hit – CI contains
0.3333 |
#14 |
21 |
0.42 |
0.0698 |
0.280401 |
0.559599 |
0.333333 |
Hit – CI contains
0.3333 |
#15 |
20 |
0.4 |
0.069282 |
0.261436 |
0.538564 |
0.333333 |
Hit – CI contains
0.3333 |
#16 |
14 |
0.28 |
0.063498 |
0.153004 |
0.406996 |
0.333333 |
Hit – CI contains
0.3333 |
#17 |
13 |
0.26 |
0.062032 |
0.135936 |
0.384064 |
0.333333 |
Hit – CI contains
0.3333 |
#18 |
16 |
0.32 |
0.06597 |
0.188061 |
0.451939 |
0.333333 |
Hit – CI contains
0.3333 |
#19 |
11 |
0.22 |
0.058583 |
0.102833 |
0.337167 |
0.333333 |
Hit – CI contains
0.3333 |
#20 |
12 |
0.24 |
0.060399 |
0.119203 |
0.360797 |
0.333333 |
Hit – CI contains
0.3333 |
Validation of the Confidence
Interval Process – Population Proportion (from Spring 2009)
Track the event “Sum = 7” in n=50
tosses of a fair of fair, six-sided dice (face values 1,2,3,4,5,6 per face).
We know that P=Pr{Sum = 7} =
6/36 = 1/6 ≈
0.1667, so we can check our intervals for accuracy. In 26 intervals,
we have one failure and 25 successes,
yielding a failure rate of approximately 3.8% (versus expected 5%).
Event Count for
(Sum=7) |
p=e/50 |
sdp = sqrt(p*(1-p)/50) |
lower95 = p-*2sdp |
upper95 = p+2*sdp |
P=Pr{Sum=7} |
Result (Contains
P=1/6?) |
11 |
0.22 |
0.0585833 |
0.102833452 |
0.337166548 |
(1/6) » 0.1667 |
Hit |
10 |
0.2 |
0.0565685 |
0.086862915 |
0.313137085 |
(1/6) » 0.1667 |
Hit |
9 |
0.18 |
0.0543323 |
0.071335378 |
0.288664622 |
(1/6) » 0.1667 |
Hit |
8 |
0.16 |
0.0518459 |
0.056308149 |
0.263691851 |
(1/6) » 0.1667 |
Hit |
4 |
0.08 |
0.0383667 |
0.003266696 |
0.156733304 |
(1/6) » 0.1667 |
Miss |
13 |
0.26 |
0.0620322 |
0.135935501 |
0.384064499 |
(1/6) » 0.1667 |
Hit |
9 |
0.18 |
0.0543323 |
0.071335378 |
0.288664622 |
(1/6) » 0.1667 |
Hit |
7 |
0.14 |
0.0490714 |
0.041857247 |
0.238142753 |
(1/6) » 0.1667 |
Hit |
7 |
0.14 |
0.0490714 |
0.041857247 |
0.238142753 |
(1/6) » 0.1667 |
Hit |
6 |
0.12 |
0.0459565 |
0.028086998 |
0.211913002 |
(1/6) » 0.1667 |
Hit |
9 |
0.18 |
0.0543323 |
0.071335378 |
0.288664622 |
(1/6) » 0.1667 |
Hit |
12 |
0.24 |
0.0603987 |
0.119202649 |
0.360797351 |
(1/6) » 0.1667 |
Hit |
7 |
0.14 |
0.0490714 |
0.041857247 |
0.238142753 |
(1/6) » 0.1667 |
Hit |
9 |
0.18 |
0.0543323 |
0.071335378 |
0.288664622 |
(1/6) » 0.1667 |
Hit |
5 |
0.1 |
0.0424264 |
0.015147186 |
0.184852814 |
(1/6) » 0.1667 |
Hit |
7 |
0.14 |
0.0490714 |
0.041857247 |
0.238142753 |
(1/6) » 0.1667 |
Hit |
12 |
0.24 |
0.0603987 |
0.119202649 |
0.360797351 |
(1/6) » 0.1667 |
Hit |
10 |
0.2 |
0.0565685 |
0.086862915 |
0.313137085 |
(1/6) » 0.1667 |
Hit |
10 |
0.2 |
0.0565685 |
0.086862915 |
0.313137085 |
(1/6) » 0.1667 |
Hit |
8 |
0.16 |
0.0518459 |
0.056308149 |
0.263691851 |
(1/6) » 0.1667 |
Hit |
12 |
0.24 |
0.0603987 |
0.119202649 |
0.360797351 |
(1/6) » 0.1667 |
Hit |
13 |
0.26 |
0.0620322 |
0.135935501 |
0.384064499 |
(1/6) » 0.1667 |
Hit |
5 |
0.1 |
0.0424264 |
0.015147186 |
0.184852814 |
(1/6) » 0.1667 |
Hit |
7 |
0.14 |
0.0490714 |
0.041857247 |
0.238142753 |
(1/6) » 0.1667 |
Hit |
10 |
0.2 |
0.0565685 |
0.086862915 |
0.313137085 |
(1/6) » 0.1667 |
Hit |
10 |
0.2 |
0.0565685 |
0.086862915 |
0.313137085 |
(1/6) » 0.1667 |
Hit |
Validation of the Confidence
Interval Process – Population Proportion (from Fall 2010)
Track the event “Sum = 7” in n=50
tosses of a fair of fair, six-sided dice (face values 1,2,3,4,5,6 per face).
We know that P=Pr{Sum = 7} =
6/36 = 1/6 ≈
0.1667, so we can check our intervals for accuracy. In 26 intervals,
we have one failure and 25 successes,
yielding a failure rate of approximately 3.8% (versus expected 5%).
6:30 |
|||||||
Sample |
Event |
p |
sdp |
lower |
upper |
Hit/Miss |
Pr{Sum=7} |
Perfect |
8.333 |
0.16667 |
0.0527046 |
0.0612574 |
0.272075922 |
Hit |
0.16666667 |
1 |
5 |
0.1 |
0.0424264 |
0.0151472 |
0.184852814 |
Hit |
0.16666667 |
2 |
8 |
0.16 |
0.0518459 |
0.0563081 |
0.263691851 |
Hit |
0.16666667 |
3 |
4 |
0.08 |
0.0383667 |
0.0032667 |
0.156733304 |
Miss |
0.16666667 |
4 |
5 |
0.1 |
0.0424264 |
0.0151472 |
0.184852814 |
Hit |
0.16666667 |
5 |
6 |
0.12 |
0.0459565 |
0.028087 |
0.211913002 |
Hit |
0.16666667 |
6 |
10 |
0.2 |
0.0565685 |
0.0868629 |
0.313137085 |
Hit |
0.16666667 |
7 |
4 |
0.08 |
0.0383667 |
0.0032667 |
0.156733304 |
Miss |
0.16666667 |
8 |
6 |
0.12 |
0.0459565 |
0.028087 |
0.211913002 |
Hit |
0.16666667 |
9 |
9 |
0.18 |
0.0543323 |
0.0713354 |
0.288664622 |
Hit |
0.16666667 |
10 |
9 |
0.18 |
0.0543323 |
0.0713354 |
0.288664622 |
Hit |
0.16666667 |
11 |
11 |
0.22 |
0.0585833 |
0.1028335 |
0.337166548 |
Hit |
0.16666667 |
12 |
9 |
0.18 |
0.0543323 |
0.0713354 |
0.288664622 |
Hit |
0.16666667 |
13 |
10 |
0.2 |
0.0565685 |
0.0868629 |
0.313137085 |
Hit |
0.16666667 |
14 |
7 |
0.14 |
0.0490714 |
0.0418572 |
0.238142753 |
Hit |
0.16666667 |
15 |
9 |
0.18 |
0.0543323 |
0.0713354 |
0.288664622 |
Hit |
0.16666667 |
16 |
11 |
0.22 |
0.0585833 |
0.1028335 |
0.337166548 |
Hit |
0.16666667 |
17 |
3 |
0.06 |
0.0335857 |
-0.0071714 |
0.127171422 |
Miss |
0.16666667 |
18 |
6 |
0.12 |
0.0459565 |
0.028087 |
0.211913002 |
Hit |
0.16666667 |
19 |
14 |
0.28 |
0.063498 |
0.1530039 |
0.406996063 |
Hit |
0.16666667 |
20 |
5 |
0.1 |
0.0424264 |
0.0151472 |
0.184852814 |
Hit |
0.16666667 |
21 |
9 |
0.18 |
0.0543323 |
0.0713354 |
0.288664622 |
Hit |
0.16666667 |
Pooled |
160 |
0.15238 |
0.011091 |
0.1301989 |
0.17456297 |
Hit |
0.16666667 |
1050 |
Miss Rate = 3/21 ≈
0.14286 Hit Rate = 18/21 ≈
0.8571429 |
||||||
8:00 |
|||||||
Sample |
Event |
p |
sdp |
lower |
upper |
Hit/Miss |
Pr{Sum=7} |
Perfect |
8.333 |
0.16667 |
0.0527046 |
0.0612574 |
0.272075922 |
Hit |
0.16666667 |
1 |
6 |
0.12 |
0.0459565 |
0.028087 |
0.211913002 |
Hit |
0.16666667 |
2 |
10 |
0.2 |
0.0565685 |
0.0868629 |
0.313137085 |
Hit |
0.16666667 |
3 |
7 |
0.14 |
0.0490714 |
0.0418572 |
0.238142753 |
Miss |
0.16666667 |
4 |
10 |
0.2 |
0.0565685 |
0.0868629 |
0.313137085 |
Hit |
0.16666667 |
5 |
7 |
0.14 |
0.0490714 |
0.0418572 |
0.238142753 |
Hit |
0.16666667 |
6 |
4 |
0.08 |
0.0383667 |
0.0032667 |
0.1567333 |
Miss |
0.16666667 |
7 |
5 |
0.1 |
0.0424264 |
0.0151472 |
0.184852814 |
Miss |
0.16666667 |
8 |
5 |
0.1 |
0.0424264 |
0.0151472 |
0.184852814 |
Hit |
0.16666667 |
9 |
8 |
0.16 |
0.0518459 |
0.0563081 |
0.263691851 |
Hit |
0.16666667 |
10 |
11 |
0.22 |
0.0585833 |
0.1028335 |
0.337166548 |
Hit |
0.16666667 |
11 |
6 |
0.12 |
0.0459565 |
0.028087 |
0.211913002 |
Hit |
0.16666667 |
12 |
7 |
0.14 |
0.0490714 |
0.0418572 |
0.238142753 |
Hit |
0.16666667 |
13 |
6 |
0.12 |
0.0459565 |
0.028087 |
0.211913002 |
Hit |
0.16666667 |
14 |
8 |
0.16 |
0.0518459 |
0.0563081 |
0.263691851 |
Hit |
0.16666667 |
15 |
14 |
0.28 |
0.063498 |
0.1530039 |
0.406996063 |
Hit |
0.16666667 |
16 |
4 |
0.08 |
0.0383667 |
0.0032667 |
0.1567333 |
Miss |
0.16666667 |
17 |
4 |
0.08 |
0.0383667 |
0.0032667 |
0.1567333 |
Miss |
0.16666667 |
18 |
14 |
0.28 |
0.063498 |
0.1530039 |
0.406996063 |
Hit |
0.16666667 |
19 |
4 |
0.08 |
0.0383667 |
0.0032667 |
0.1567333 |
Miss |
0.16666667 |
20 |
13 |
0.26 |
0.0620322 |
0.1359355 |
0.384064499 |
Hit |
0.16666667 |
21 |
6 |
0.12 |
0.0459565 |
0.028087 |
0.211913002 |
Hit |
0.16666667 |
Pooled |
159 |
0.15143 |
0.0110625 |
0.1293036 |
0.173553581 |
Hit |
0.16666667 |
1050 |
Miss Rate = 4/21 ≈
0.19048 Hit Rate = 17/21
≈ 0.8095238 |
The Fall 2010 results are choppy –
from time to time, this can happen, and is in fact expected to do so – a random
process that never, ever yields an anomalous result is suspect.
From http://www.mindspring.com/~cjalverson/2ndhourlySummer2008Key.htm
Second Hourly, Summer 2008, Version A
The top number
is the systolic blood pressure reading.
It represents the maximum pressure exerted when the heart contracts. The bottom number is the diastolic blood pressure
reading. It represents the pressure in the arteries when the heart is at rest. A sample of FHS adult subjects yields the
following readings:
124/88, 140/90,
156/108, 130/70,
175/75, 136/84, 124/84, 144/88,
128/74, 154/90, 160/92, 210/120, 110/75, 166/108, 100/70, 172/110,
160/90, 145/75, 122/84, 162/80, 156/84, 120/65, 128/84, 130/90, 210/110,
110/68, 160/106, 140/90, 132/72, 120/80, 200/100, 165/105,
132/88, 134/84, 120/75, 138/85, 118/86, 152/74, 138/70, 124/74, 122/80, 155/90,
160/100, 294/144, 140/82, 132/86, 120/80, 200/130, 126/86,
150/100, 135/75, 140/78, 142/85, 146/94, 185/90, 166/78, 190/100,
160/80, 140/80, 120/80,150/95, 124/75, 150/110, 140/84, 130/82, 130/80, 230/124,
128/72, 220/118, 130/80, 165/95, 208/114, 126/80, 140/90, 166/104,
130/70, 130/80, 120/90
Case Two | Confidence
Interval: Population Proportion |
Using the data and context from Case One,
compute and interpret a 95% confidence interval for the population proportion
of Framingham Heart Study subjects with Systolic Blood Pressure strictly
greater than 160 mm Hg. work. Fully discuss the
results. This discussion must include a clear discussion of the population and
the population proportion, the family of samples, the family of intervals and
the interpretation of the interval.
Numbers
n event
p sdp z
lower upper
78
18 0.23077 0.047706
2 0.13536 0.32618
event
= number of FHS subjects in the sample with SBP > 160 = 18
p = event/n = 18/78 ≈
0.23077
sdp = sqrt(p*(1-p)/n) = sqrt((18/78)*(60/78)/78) » 0.047706
Table 1. Means and Proportions
Z(k) PROBRT PROBCENT 0.05 0.48006 0.03988 0.10 0.46017 0.07966 0.15 0.44038 0.11924 0.20 0.42074 0.15852 0.25 0.40129 0.19741 0.30 0.38209 0.23582 0.35 0.36317 0.27366 0.40 0.34458 0.31084 0.45 0.32636 0.34729 0.50 0.30854 0.38292 0.55 0.29116 0.41768 0.60 0.27425 0.45149 0.65 0.25785 0.48431 0.70 0.24196 0.51607 0.75 0.22663 0.54675 0.80 0.21186 0.57629 0.85 0.19766 0.60467 0.90 0.18406 0.63188 0.95 0.17106 0.65789 1.00 0.15866 0.68269 |
Z(k) PROBRT PROBCENT 1.05 0.14686 0.70628 1.10 0.13567 0.72867 1.15 0.12507 0.74986 1.20 0.11507 0.76986 1.25 0.10565 0.78870 1.30 0.09680 0.80640 1.35 0.088508 0.82298 1.40 0.080757 0.83849 1.45 0.073529 0.85294 1.50 0.066807 0.86639 1.55 0.060571 0.87886 1.60 0.054799 0.89040 1.65 0.049471 0.90106 1.70 0.044565 0.91087 1.75 0.040059 0.91988 1.80 0.035930 0.92814 1.85 0.032157 0.93569 1.90 0.028717 0.94257 1.95 0.025588 0.94882 2.00 0.022750
0.95450 |
Z(k) PROBRT PROBCENT 2.05 0.020182 0.95964 2.10 0.017864 0.96427 2.15 0.015778 0.96844 2.20 0.013903 0.97219 2.25 0.012224 0.97555 2.30 0.010724 0.97855 2.35 0.009387 0.98123 2.40 0.008198 0.98360 2.45 0.007143 0.98571 2.50 0.006210 0.98758 2.55 0.005386 0.98923 2.60 0.004661 0.99068 2.65 0.004025 0.99195 2.70 .0034670 0.99307 2.75 .0029798 0.99404 2.80 .0025551 0.99489 2.85 .0021860 0.99563 2.90 .0018658 0.99627 2.95 .0015889 0.99682 3.00 .0013499 0.99730 |
from
2.00 0.022750 0.95450, Z ≈2.00
upper
= p ─ z*sdp ≈ 0.23077 ─ 2*0.047706 ≈ 0.13536
upper
= p + z*sdp ≈ 0.23077 + 2*0.047706 ≈ 0.32618
We estimate the population
proportion of Framingham Heart Study (FSH) subjects whose systolic blood
pressure (SBP) strictly exceeds 160 mm Hg.
Each member of our family
of samples is a single random sample of 78 Framingham Heart Study (FSH)
subjects, and the family of samples consists of all possible samples of this
type.
From each member of the
family of samples, we compute event( = number of FHS subjects in the sample with SBP
> 160), p( = event/n), sdp(= sqrt(p*(1-p)/n)) and the interval [p ─ z*sdp,
p + z*sdp].
Approximately 95% of the
member samples yield intervals containing the true population proportion of FHS
subjects whose SBP strictly exceeds 160 mm Hg.
If our interval resides
within this super-majority, then between 13.5% and 32,6%
of FHS subjects have SBP strictly exceeding 160 mm Hg.
From http://www.mindspring.com/~cjalverson/3rd%20Hourly%20Spring%202007%20Version%20A%20Key.htm
Third
Hourly, Spring 2007,
Version A
Case Three
Confidence Interval: Population
Proportion
Traumatic Brain Injury (TBI) and
Glasgow Coma Scale (GCS)
The Glasgow Coma Scale (GCS)
is the most widely used system for scoring the level of consciousness of a patient
who has had a traumatic brain injury. GCS is based on the patient's best
eye-opening, verbal, and motor responses. Each response is scored and then the
sum of the three scores is computed. That is,
Glasgow Coma Scale Categories: Mild
(13-15); Moderate (9-12) and Severe/Coma (3-8)
Traumatic brain injury (TBI) 1,
2 is an
insult to the brain from an external mechanical force, possibly leading to
permanent or temporary impairments of cognitive, physical, and psychosocial
functions with an associated diminished or altered state of consciousness.
Consider a random sample of patients with TBI, with GCS at initial treatment
and diagnosis listed below:
3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6,
6, 6, 6, 7, 7, 7, 7 8, 8, 8, 9, 9, 9,
9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13,
14, 14, 14, 14, 14, 14, 15
Consider the
proportion of TBI patients presenting severe GCS. Compute and interpret a 97%
confidence interval for
this population proportion. Show your work. Fully discuss the results. This
discussion must include a clear discussion of the population and the population
proportion, the family of samples, the family of intervals and the
interpretation of the interval.
1: http://www2.state.tn.us/health/statistics/PdfFiles/TBI_Rpt_2000-2004.pdf
2: http://www.aemj.org/cgi/content/abstract/10/5/491
Numbers
3, 3, 3, 4, 4 | 4, 4, 4, 4, 5 | 5, 5, 5, 5, 5 | 5, 5, 5, 5, 6 | 6,
6, 6, 6, 6 | 7, 7, 7, 7 8 | 8, 8, 9, 9, 9 |
9, 9, 9, 9, 9 | 10, 10, 10, 10, 10 | 11, 11, 11, 12, 12 | 13, 13,
13, 14, 14 | 14, 14, 14, 14, 15
n = sample size = 60
Event = “TBI Patient
Initially Presents with GCS Severe (3 ≤ GCS ≤ 8).”
e = sample event count = 32
p = e/n = 32/60 ≈ .5333
sdp = sqrt(p*(1–p)/n) = sqrt((32/60)*(28/60)/60)
≈ 0.064406
Table 1. Means and Proportions
Z(k) PROBRT 0.05 0.48006 0.03988 0.10 0.46017 0.07966 0.15 0.44038 0.11924 0.20 0.42074 0.15852 0.25 0.40129 0.19741 0.30 0.38209 0.23582 0.35 0.36317 0.27366 0.40 0.34458 0.31084 0.45 0.32636 0.34729 0.50 0.30854 0.38292 0.55 0.29116 0.41768 0.60 0.27425 0.45149 0.65 0.25785 0.48431 0.70 0.24196 0.51607 0.75 0.22663 0.54675 0.80 0.21186 0.57629 0.85 0.19766 0.60467 0.90 0.18406 0.63188 0.95 0.17106 0.65789 1.00 0.15866 0.68269 |
Z(k) PROBRT P 1.05 0.14686 0.70628 1.10 0.13567 0.72867 1.15 0.12507 0.74986 1.20 0.11507 0.76986 1.25 0.10565 0.78870 1.30 0.09680 0.80640 1.35 0.088508 0.82298 1.40 0.080757 0.83849 1.45 0.073529 0.85294 1.50 0.066807 0.86639 1.55 0.060571 0.87886 1.60 0.054799 0.89040 1.65 0.049471 0.90106 1.70 0.044565 0.91087 1.75 0.040059 0.91988 1.80 0.035930 0.92814 1.85 0.032157 0.93569 1.90 0.028717 0.94257 1.95 0.025588 0.94882 2.00 0.022750 0.95450 |
Z(k) PROBRT PR 2.05 0.020182 0.95964 2.10 0.017864 0.96427 2.15 0.015778 0.96844 2.20 0.013903
0.97219 2.25 0.012224 0.97555 2.30 0.010724 0.97855 2.35 0.009387 0.98123 2.40 0.008198 0.98360 2.45 0.007143 0.98571 2.50 0.006210 0.98758 2.55 0.005386 0.98923 2.60 0.004661 0.99068 2.65 0.004025 0.99195 2.70 .0034670 0.99307 2.75 .0029798 0.99404 2.80 .0025551 0.99489 2.85 .0021860 0.99563 2.90 .0018658 0.99627 2.95 .0015889 0.99682 3.00 .0013499 0.99730 |
Z = 2.20 from the row 2.20
0.013903 0.97219.
Lower Bound = p – 2.2*sdp ≈ .5333 – 2.2*0.064406 ≈ 0.39164
Upper Bound = p + 2.2*sdp ≈ .5333 + 2.2*0.064406 ≈ 0.67503
Discussion
Our population is
the population of people with Traumatic Brain Injury (TBI).
Our Family of Samples
(FoS) consists of every
possible random sample of 60 people with TBI.
From each member sample
of the FoS, we compute the interval
[Lower Bound, Upper Bound] =
[p – 2.2*sdp, p + 2.2*sdp], where sdp = sqrt(p*(1–p)/n). Computing this interval for each member sample of
the FoS, we obtain a Family
of Intervals (FoI), approximately 97% of
which cover the true population proportion of TBI cases with initially severe TBI.
If our interval, [.3916,
.6750] is among the approximate 97% super-majority of intervals that cover the
population proportion, then between 39.2% and 67.5% of TBI cases initially
present with severe (3 ≤ GCS ≤ 8) TBI.
From http://www.mindspring.com/~cjalverson/CompFinalSpring2008verWednesdayKey.htm
Final Examination, Spring 2008, Version Wednesday
Case Three | Confidence
Interval for Proportion | Gestational Age
Consider the proportion
of Year 2005 US Resident Live Births that are “Full Term,” that is births with
[37,40] weeks of
gestation at birth. Using the data from Case Two, compute and interpret a
98% confidence interval for this population proportion.
Gestational age is the time spent between conception and birth,
usually measured in weeks. In general, infants born after 36 or fewer weeks of
gestation are defined as premature, and may face significant challenges in
health and development. Infants born after
37-40 weeks of gestation are generally viewed as full term, and those born after 41 or more weeks of
gestation are generally viewed as post term. Suppose that a random sample of
2005 US resident live born infants yields the following gestational ages (in
weeks):
25, 26, 27, 29, 30, 32, 33, 34, 34, 35, 35, 36, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
38, 38, 38, 38, 38 38,38, 38, 38, 38, 38, 38, 39, 39, 39, 40, 40, 40, 40, 40,
40, 40, 40, 40, 40, 41, 41, 41, 42, 42,
42, 43, 43
Numbers
Table 1. Means and Proportions
Z(k) PROBRT PROBCENT 0.05 0.48006 0.03988 0.10 0.46017 0.07966 0.15 0.44038 0.11924 0.20 0.42074 0.15852 0.25 0.40129 0.19741 0.30 0.38209 0.23582 0.35 0.36317 0.27366 0.40 0.34458 0.31084 0.45 0.32636 0.34729 0.50 0.30854 0.38292 0.55 0.29116 0.41768 0.60 0.27425 0.45149 0.65 0.25785 0.48431 0.70 0.24196 0.51607 0.75 0.22663 0.54675 0.80 0.21186 0.57629 0.85 0.19766 0.60467 0.90 0.18406 0.63188 0.95 0.17106 0.65789 1.00 0.15866 0.68269 |
Z(k) PROBRT PROBCENT 1.05 0.14686 0.70628 1.10 0.13567 0.72867 1.15 0.12507 0.74986 1.20 0.11507 0.76986 1.25 0.10565 0.78870 1.30 0.09680 0.80640 1.35 0.088508 0.82298 1.40 0.080757 0.83849 1.45 0.073529 0.85294 1.50 0.066807 0.86639 1.55 0.060571 0.87886 1.60 0.054799 0.89040 1.65 0.049471 0.90106 1.70 0.044565 0.91087 1.75 0.040059 0.91988 1.80 0.035930 0.92814 1.85 0.032157 0.93569 1.90 0.028717 0.94257 1.95 0.025588 0.94882 2.00 0.022750 0.95450 |
Z(k) PROBRT PROBCENT 2.05 0.020182 0.95964 2.10 0.017864 0.96427 2.15 0.015778 0.96844 2.20 0.013903 0.97219 2.25 0.012224 0.97555 2.30 0.010724 0.97855 2.35 0.009387
0.98123 2.40 0.008198 0.98360 2.45 0.007143 0.98571 2.50 0.006210 0.98758 2.55 0.005386 0.98923 2.60 0.004661 0.99068 2.65 0.004025 0.99195 2.70 .0034670 0.99307 2.75 .0029798 0.99404 2.80 .0025551 0.99489 2.85 .0021860 0.99563 2.90 .0018658 0.99627 2.95 .0015889 0.99682 3.00 .0013499 0.99730 |
From 2.35 0.009387
0.98123, z=2.35
n = 56
e = 36
p = 36/56 ≈ 0.64286
sdp = sqrt(p*(1-p)/n) = sqrt((36/56)*(20/56)/56) ≈ 0.064030
lowCI = p − z*sdp = 0.64286 − 2.35*0.064030 ≈ 0.49239
highCI = p + z*sdp = 0.64286 + 2.35*0.064030 ≈ 0.79333
Report the interval as
[.492, .793 ].
Interpretation
Our population is the population
of year 2005 US resident live born infants and our population mean is the mean
gestational age (weeks). Our event is that the live born infant was born with
between 37 and 40 weeks of gestation.
Our Family of Samples (FoS) consists of every possible random sample of 56 year 2005 US
resident live born infants. From each individual sampled live born infant,
gestational age in weeks is obtained.
From each member sample
of the FoS, we compute the sample proportion p of infants in the sample with
between 37 and 40 weeks of gestation at birth and sdp,
where sdp=sqrt(p*(1-p)/56), and then compute the interval
[p – 2.35*sdp, p + 2.35*sdp].
Computing this interval
for each member sample of the FoS, we obtain a Family of Intervals (FoI),
approximately 98% of which cover the true population proportion of year 2005 US
resident live born infants with between 37 and 40 weeks of gestation.
If our interval, [.492,
.793] is among the approximate 98% super-majority of intervals that cover the
population mean, then between 49.2% and 79.3% of year 2005 US resident live
born infants have gestation ages between 37 and 40 weeks.
Case List and Expected Progress
Descriptive Statistics – Complete
Summary/Descriptive Intervals – In Progress,
Nearly Complete
Confidence Interval – Population Mean – In
Process
Confidence Interval – Population Proportion –
Begin Work
Remaining Case Work
Hypothesis Test – Population Median
Hypothesis Test – Population Category /
Goodness of Fit