Summaries
Session
1.3
25th
August 2010
Continue work on the Long Run
Argument and Perfect Sample case types in 1st
Hourly Stuff. Start to build your narratives.
We extend our study of probability
to dice. We revisit the idea of a model or population proportion as a
probability, and introduce the idea of a random variable.
Models
A Fair, Six-sided Die
|
Using a Fair, Six-sided Die to
Simulate A Fair, Three-sided Die
|
|||||||||||||||||||||||||
A Fair, Three-sided Die
|
Probability Calculations (fair d6→ fair d3)
Pr
The Fair d6 Model
FV: Face Values: 1,2,3,4,5,6
Fair Model: Equally
likely face values – 1/6 per face value
Pr In long runs of tosses, approximately 1 toss in 6 shows “1”. |
Pr In long runs of tosses, approximately 1 toss in 6 shows “2”. |
Pr In long runs of tosses, approximately 1 toss in 6 shows “3”. |
Pr In long runs of tosses, approximately 1 toss in 6 shows “4”. |
Pr In long runs of tosses, approximately 1 toss in 6 shows “5”. |
Pr In long runs of tosses, approximately 1 toss in 6 shows “6”. |
The Fair d3 Model Nested
within a Fair d6 Model
FV: Face Values: 1(1,2), 2(3,4), 3(5,6)
Fair Model: Equally
likely face values – (2/6 =)1/3 per face value.
Pr =
1/3 @ .3333 or 33.33% In long runs of tosses, approximately 1 toss in 3 shows “1”. |
Pr =
1/3 @ .3333 or 33.33% In long runs of tosses, approximately 1 toss in 3 shows “2”. |
Pr =
1/33 @ .3333 or 33.33% In long runs of tosses, approximately 1 toss in 3 shows “3”. |
Probability Computational Rules
1. Additive Rule – Map Faces to
Faces
2. Inheritance of Fair Model
3. Fair d3 Model from Fair d6 Model
D6/D3 Worksheet
50 Tosses per Sample (n=50)
Sample Grid – One Toss per Cell
0X |
X2 |
X3 |
X4 |
X5 |
X6 |
X7 |
X8 |
X9 |
X9 |
2 |
|
|
|
|
|
|
|
|
X |
3 |
|
|
|
|
|
|
|
|
X |
4 |
|
|
|
|
|
|
|
|
X |
5 |
|
|
|
|
|
|
|
|
|
Case Steps:
Toss Die
Note D6 Face Value
Map D6 to D3 and
Note D3 Face Value:
D6 Face Value Þ D3 Face Value
1, 2 Þ 1
3, 4 Þ 2
5, 6 Þ 3
D6 Face Value |
Count |
D3 Face Value |
Count |
1 |
|
1 |
|
2 |
|
||
3 |
|
2 |
|
4 |
|
||
5 |
|
3 |
|
6 |
|
||
Total |
|
Total |
|
Sample
Tables
6:30
Samples
Sample #1 |
Sample #2 |
Pooled 12 |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
7 |
0.1400 |
0.1667 |
7 |
0.1400 |
14 |
0.1400 |
||||||||
2 |
7 |
0.1400 |
0.1667 |
1 |
14 |
0.2800 |
0.3333 |
15 |
0.3000 |
22 |
0.4400 |
22 |
0.2200 |
36 |
0.3600 |
3 |
8 |
0.1600 |
0.1667 |
3 |
0.0600 |
11 |
0.1100 |
||||||||
4 |
9 |
0.1800 |
0.1667 |
2 |
17 |
0.3400 |
0.3333 |
14 |
0.2800 |
17 |
0.3400 |
23 |
0.2300 |
34 |
0.3400 |
5 |
13 |
0.2600 |
0.1667 |
7 |
0.1400 |
20 |
0.2000 |
||||||||
6 |
6 |
0.1200 |
0.1667 |
3 |
19 |
0.3800 |
0.3333 |
4 |
0.0800 |
11 |
0.2200 |
10 |
0.1000 |
30 |
0.3000 |
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
|||
Sample #3 |
Sample #4 |
Pooled 34 |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
10 |
0.2000 |
0.1667 |
7 |
0.1400 |
17 |
0.1700 |
||||||||
2 |
5 |
0.1000 |
0.1667 |
1 |
15 |
0.3000 |
0.3333 |
13 |
0.2600 |
20 |
0.4000 |
18 |
0.1800 |
35 |
0.3500 |
3 |
7 |
0.1400 |
0.1667 |
5 |
0.1000 |
12 |
0.1200 |
||||||||
4 |
10 |
0.2000 |
0.1667 |
2 |
17 |
0.3400 |
0.3333 |
5 |
0.1000 |
10 |
0.2000 |
15 |
0.1500 |
27 |
0.2700 |
5 |
6 |
0.1200 |
0.1667 |
10 |
0.2000 |
16 |
0.1600 |
||||||||
6 |
12 |
0.2400 |
0.1667 |
3 |
18 |
0.3600 |
0.3333 |
10 |
0.2000 |
20 |
0.4000 |
22 |
0.2200 |
38 |
0.3800 |
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
|||
Sample #5 |
Sample #6 |
Pooled 56 |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
6 |
0.1200 |
0.1667 |
4 |
0.0800 |
10 |
0.1000 |
||||||||
2 |
14 |
0.2800 |
0.1667 |
1 |
20 |
0.4000 |
0.3333 |
8 |
0.1600 |
12 |
0.2400 |
22 |
0.2200 |
32 |
0.3200 |
3 |
6 |
0.1200 |
0.1667 |
6 |
0.1200 |
12 |
0.1200 |
||||||||
4 |
9 |
0.1800 |
0.1667 |
2 |
15 |
0.3000 |
0.3333 |
12 |
0.2400 |
18 |
0.3600 |
21 |
0.2100 |
33 |
0.3300 |
5 |
9 |
0.1800 |
0.1667 |
12 |
0.2400 |
21 |
0.2100 |
||||||||
6 |
6 |
0.1200 |
0.1667 |
3 |
15 |
0.3000 |
0.3333 |
8 |
0.1600 |
20 |
0.4000 |
14 |
0.1400 |
35 |
0.3500 |
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
|||
Pooled 135 |
Pooled 246 |
Pooled All |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
23 |
0.1533 |
0.1667 |
18 |
0.1200 |
41 |
0.1367 |
||||||||
2 |
26 |
0.1733 |
0.1667 |
1 |
49 |
0.3267 |
0.3333 |
36 |
0.2400 |
54 |
0.3600 |
62 |
0.2067 |
103 |
0.3433 |
3 |
21 |
0.1400 |
0.1667 |
14 |
0.0933 |
35 |
0.1167 |
||||||||
4 |
28 |
0.1867 |
0.1667 |
2 |
49 |
0.3267 |
0.3333 |
31 |
0.2067 |
45 |
0.3000 |
59 |
0.1967 |
94 |
0.3133 |
5 |
28 |
0.1867 |
0.1667 |
29 |
0.1933 |
57 |
0.1900 |
||||||||
6 |
24 |
0.1600 |
0.1667 |
3 |
52 |
0.3467 |
0.3333 |
22 |
0.1467 |
51 |
0.3400 |
46 |
0.1533 |
103 |
0.3433 |
Total |
150 |
1.0000 |
150 |
1.0000 |
150 |
1.0000 |
150 |
1.0000 |
300 |
1.0000 |
300 |
1.0000 |
8:00 Samples
Sample #1 |
Sample #2 |
Pooled 12 |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
11 |
0.2200 |
0.1667 |
7 |
0.1400 |
18 |
0.1800 |
||||||||
2 |
9 |
0.1800 |
0.1667 |
1 |
20 |
0.4000 |
0.3333 |
9 |
0.1800 |
16 |
0.3200 |
18 |
0.1800 |
36 |
0.3600 |
3 |
11 |
0.2200 |
0.1667 |
6 |
0.1200 |
17 |
0.1700 |
||||||||
4 |
5 |
0.1000 |
0.1667 |
2 |
16 |
0.3200 |
0.3333 |
10 |
0.2000 |
16 |
0.3200 |
15 |
0.1500 |
32 |
0.3200 |
5 |
11 |
0.2200 |
0.1667 |
8 |
0.1600 |
19 |
0.1900 |
||||||||
6 |
3 |
0.0600 |
0.1667 |
3 |
14 |
0.2800 |
0.3333 |
10 |
0.2000 |
18 |
0.3600 |
13 |
0.1300 |
32 |
0.3200 |
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
|||
Sample #3 |
Sample #4 |
Pooled 34 |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
9 |
0.1800 |
0.1667 |
8 |
0.1600 |
17 |
0.1700 |
||||||||
2 |
7 |
0.1400 |
0.1667 |
1 |
16 |
0.3200 |
0.3333 |
9 |
0.1800 |
17 |
0.3400 |
16 |
0.1600 |
33 |
0.3300 |
3 |
7 |
0.1400 |
0.1667 |
11 |
0.2200 |
18 |
0.1800 |
||||||||
4 |
8 |
0.1600 |
0.1667 |
2 |
15 |
0.3000 |
0.3333 |
9 |
0.1800 |
20 |
0.4000 |
17 |
0.1700 |
35 |
0.3500 |
5 |
8 |
0.1600 |
0.1667 |
7 |
0.1400 |
15 |
0.1500 |
||||||||
6 |
11 |
0.2200 |
0.1667 |
3 |
19 |
0.3800 |
0.3333 |
6 |
0.1200 |
13 |
0.2600 |
17 |
0.1700 |
32 |
0.3200 |
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
|||
Sample #5 |
Sample #6 |
Pooled 56 |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
8 |
0.1600 |
0.1667 |
7 |
0.1400 |
15 |
0.1500 |
||||||||
2 |
13 |
0.2600 |
0.1667 |
1 |
21 |
0.4200 |
0.3333 |
7 |
0.1400 |
14 |
0.2800 |
20 |
0.2000 |
35 |
0.3500 |
3 |
7 |
0.1400 |
0.1667 |
11 |
0.2200 |
18 |
0.1800 |
||||||||
4 |
5 |
0.1000 |
0.1667 |
2 |
12 |
0.2400 |
0.3333 |
6 |
0.1200 |
17 |
0.3400 |
11 |
0.1100 |
29 |
0.2900 |
5 |
10 |
0.2000 |
0.1667 |
8 |
0.1600 |
18 |
0.1800 |
||||||||
6 |
7 |
0.1400 |
0.1667 |
3 |
17 |
0.3400 |
0.3333 |
11 |
0.2200 |
19 |
0.3800 |
18 |
0.1800 |
36 |
0.3600 |
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
|||
Pooled 135 |
Pooled 246 |
Pooled All |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
28 |
0.1867 |
0.1667 |
22 |
0.1467 |
50 |
0.1667 |
||||||||
2 |
29 |
0.1933 |
0.1667 |
1 |
57 |
0.3800 |
0.3333 |
25 |
0.1667 |
47 |
0.3133 |
54 |
0.1800 |
104 |
0.3467 |
3 |
25 |
0.1667 |
0.1667 |
28 |
0.1867 |
53 |
0.1767 |
||||||||
4 |
18 |
0.1200 |
0.1667 |
2 |
43 |
0.2867 |
0.3333 |
25 |
0.1667 |
53 |
0.3533 |
43 |
0.1433 |
96 |
0.3200 |
5 |
29 |
0.1933 |
0.1667 |
23 |
0.1533 |
52 |
0.1733 |
||||||||
6 |
21 |
0.1400 |
0.1667 |
3 |
50 |
0.3333 |
0.3333 |
27 |
0.1800 |
50 |
0.3333 |
48 |
0.1600 |
100 |
0.3333 |
Total |
150 |
1.0000 |
150 |
1.0000 |
150 |
1.0000 |
150 |
1.0000 |
300 |
1.0000 |
300 |
1.0000 |
Compare
the correspondence of the sample proportions (p) to the model probabilities
(P).
Fair Models |
|||||
d6 |
N |
P |
d3 |
N |
P |
1 |
1 |
1/6≈0.1667 |
|||
2 |
1 |
1/6≈0.1667 |
1 |
1 |
1/3≈0.3333 |
3 |
1 |
1/6≈0.1667 |
|||
4 |
1 |
1/6≈0.1667 |
2 |
1 |
1/3≈0.3333 |
5 |
1 |
1/6≈0.1667 |
|||
6 |
1 |
1/6≈0.1667 |
3 |
1 |
1/3≈0.3333 |
Total |
6 |
6/6=1.0000 |
3 |
3/3=1.0000 |