Summaries

Session 1.3

25th August 2010

Continue work on the Long Run Argument and Perfect Sample case types in 1st Hourly Stuff. Start to build your narratives.

We extend our study of probability to dice. We revisit the idea of a model or population proportion as a probability, and introduce the idea of a random variable.

Models

A Fair, Six-sided Die

Face Value, d6 (FV d6)

Probability

1

1/6

2

1/6

3

1/6

4

1/6

5

1/6

6

1/6

 

Using a Fair, Six-sided Die to Simulate A Fair, Three-sided Die

Face Value, d6 (FV d6)

Mapped Face Value, d3 (FV d3)

1

1

2

3

2

4

5

3

6

 

 

 

A Fair, Three-sided Die

Face Value, d3 (FV d3)

Probability

1

1/3

2

1/3

3

1/3

 

 

Probability Calculations (fair d6fair d3)

Pr{E} denotes Probability for the event E.

The Fair d6 Model

FV: Face Values: 1,2,3,4,5,6

Fair Model: Equally likely face values – 1/6 per face value

 

Pr{d6 Shows 1} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “1”.

 

Pr{d6 Shows 2} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “2”.

 

Pr{d6 Shows 3} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “3”.

 

Pr{d6 Shows 4} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “4”.

 

Pr{d6 Shows 5} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “5”.

 

Pr{d6 Shows 6} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “6”.

 

 

The Fair d3 Model Nested within a Fair d6 Model

 

FV: Face Values: 1(1,2), 2(3,4), 3(5,6)

Fair Model: Equally likely face values –  (2/6 =)1/3 per face value.

 

 

Pr{d3 shows “1”} = Pr{d6 Shows 1} + Pr{d6 Shows 2}1 = (1/6) + (1/6) = 2/6

= 1/3 @ .3333 or 33.33%

 

In long runs of tosses, approximately 1 toss in 3 shows “1”.

 

 

Pr{d3 shows “2”} = Pr{d6 Shows 3} + Pr{d6 Shows 4} = (1/6) + (1/6)2 = 2/6

= 1/3 @ .3333 or 33.33%

 

In long runs of tosses, approximately 1 toss in 3 shows “2”.

 

 

Pr{d3 shows “3”} = Pr{d6 Shows 5} + Pr{d6 Shows 6} = (1/6) + (1/6) = 2/6

= 1/33 @ .3333 or 33.33%

 

In long runs of tosses, approximately 1 toss in 3 shows “3”.

 

 

 Probability Computational Rules

 

1. Additive Rule – Map Faces to Faces

2. Inheritance of Fair Model

3. Fair d3 Model from Fair d6 Model

 

D6/D3 Worksheet

50 Tosses per Sample (n=50)

Sample Grid – One Toss per Cell

0X

X2

X3

X4

X5

X6

X7

X8

X9

X9

2

 

 

 

 

 

 

 

 

X

3

 

 

 

 

 

 

 

 

X

4

 

 

 

 

 

 

 

 

X

5

 

 

 

 

 

 

 

 

 

 

Case Steps:

Toss Die

Note D6 Face Value

Map D6 to D3 and Note D3 Face Value:

D6 Face Value Þ D3 Face Value

1, 2 Þ 1               

3, 4 Þ 2

5, 6 Þ 3

 

D6 Face Value

Count

D3 Face Value

Count

1

 

1

 

2

 

3

 

2

 

4

 

5

 

3

 

6

 

Total

 

Total

 

Sample Tables

6:30 Samples

Sample #1

Sample #2

Pooled 12

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

7

0.1400

0.1667

7

0.1400

14

0.1400

2

7

0.1400

0.1667

1

14

0.2800

0.3333

15

0.3000

22

0.4400

22

0.2200

36

0.3600

3

8

0.1600

0.1667

3

0.0600

11

0.1100

4

9

0.1800

0.1667

2

17

0.3400

0.3333

14

0.2800

17

0.3400

23

0.2300

34

0.3400

5

13

0.2600

0.1667

7

0.1400

20

0.2000

6

6

0.1200

0.1667

3

19

0.3800

0.3333

4

0.0800

11

0.2200

10

0.1000

30

0.3000

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Sample #3

Sample #4

Pooled 34

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

10

0.2000

0.1667

7

0.1400

17

0.1700

2

5

0.1000

0.1667

1

15

0.3000

0.3333

13

0.2600

20

0.4000

18

0.1800

35

0.3500

3

7

0.1400

0.1667

5

0.1000

12

0.1200

4

10

0.2000

0.1667

2

17

0.3400

0.3333

5

0.1000

10

0.2000

15

0.1500

27

0.2700

5

6

0.1200

0.1667

10

0.2000

16

0.1600

6

12

0.2400

0.1667

3

18

0.3600

0.3333

10

0.2000

20

0.4000

22

0.2200

38

0.3800

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Sample #5

Sample #6

Pooled 56

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

6

0.1200

0.1667

4

0.0800

10

0.1000

2

14

0.2800

0.1667

1

20

0.4000

0.3333

8

0.1600

12

0.2400

22

0.2200

32

0.3200

3

6

0.1200

0.1667

6

0.1200

12

0.1200

4

9

0.1800

0.1667

2

15

0.3000

0.3333

12

0.2400

18

0.3600

21

0.2100

33

0.3300

5

9

0.1800

0.1667

12

0.2400

21

0.2100

6

6

0.1200

0.1667

3

15

0.3000

0.3333

8

0.1600

20

0.4000

14

0.1400

35

0.3500

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Pooled 135

Pooled 246

Pooled All

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

23

0.1533

0.1667

18

0.1200

41

0.1367

2

26

0.1733

0.1667

1

49

0.3267

0.3333

36

0.2400

54

0.3600

62

0.2067

103

0.3433

3

21

0.1400

0.1667

14

0.0933

35

0.1167

4

28

0.1867

0.1667

2

49

0.3267

0.3333

31

0.2067

45

0.3000

59

0.1967

94

0.3133

5

28

0.1867

0.1667

29

0.1933

57

0.1900

6

24

0.1600

0.1667

3

52

0.3467

0.3333

22

0.1467

51

0.3400

46

0.1533

103

0.3433

Total

150

1.0000

150

1.0000

150

1.0000

150

1.0000

300

1.0000

300

1.0000

 

 

8:00 Samples

 

Sample #1

Sample #2

Pooled 12

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

11

0.2200

0.1667

7

0.1400

18

0.1800

2

9

0.1800

0.1667

1

20

0.4000

0.3333

9

0.1800

16

0.3200

18

0.1800

36

0.3600

3

11

0.2200

0.1667

6

0.1200

17

0.1700

4

5

0.1000

0.1667

2

16

0.3200

0.3333

10

0.2000

16

0.3200

15

0.1500

32

0.3200

5

11

0.2200

0.1667

8

0.1600

19

0.1900

6

3

0.0600

0.1667

3

14

0.2800

0.3333

10

0.2000

18

0.3600

13

0.1300

32

0.3200

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Sample #3

Sample #4

Pooled 34

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

9

0.1800

0.1667

8

0.1600

17

0.1700

2

7

0.1400

0.1667

1

16

0.3200

0.3333

9

0.1800

17

0.3400

16

0.1600

33

0.3300

3

7

0.1400

0.1667

11

0.2200

18

0.1800

4

8

0.1600

0.1667

2

15

0.3000

0.3333

9

0.1800

20

0.4000

17

0.1700

35

0.3500

5

8

0.1600

0.1667

7

0.1400

15

0.1500

6

11

0.2200

0.1667

3

19

0.3800

0.3333

6

0.1200

13

0.2600

17

0.1700

32

0.3200

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Sample #5

Sample #6

Pooled 56

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

8

0.1600

0.1667

7

0.1400

15

0.1500

2

13

0.2600

0.1667

1

21

0.4200

0.3333

7

0.1400

14

0.2800

20

0.2000

35

0.3500

3

7

0.1400

0.1667

11

0.2200

18

0.1800

4

5

0.1000

0.1667

2

12

0.2400

0.3333

6

0.1200

17

0.3400

11

0.1100

29

0.2900

5

10

0.2000

0.1667

8

0.1600

18

0.1800

6

7

0.1400

0.1667

3

17

0.3400

0.3333

11

0.2200

19

0.3800

18

0.1800

36

0.3600

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Pooled 135

Pooled 246

Pooled All

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

28

0.1867

0.1667

22

0.1467

50

0.1667

2

29

0.1933

0.1667

1

57

0.3800

0.3333

25

0.1667

47

0.3133

54

0.1800

104

0.3467

3

25

0.1667

0.1667

28

0.1867

53

0.1767

4

18

0.1200

0.1667

2

43

0.2867

0.3333

25

0.1667

53

0.3533

43

0.1433

96

0.3200

5

29

0.1933

0.1667

23

0.1533

52

0.1733

6

21

0.1400

0.1667

3

50

0.3333

0.3333

27

0.1800

50

0.3333

48

0.1600

100

0.3333

Total

150

1.0000

150

1.0000

150

1.0000

150

1.0000

300

1.0000

300

1.0000

 

 

Compare the correspondence of the sample proportions (p) to the model probabilities (P).

 

Fair Models

d6

N

P

d3

N

P

1

1

1/6≈0.1667

2

1

1/6≈0.1667

1

1

1/3≈0.3333

3

1

1/6≈0.1667

4

1

1/6≈0.1667

2

1

1/3≈0.3333

5

1

1/6≈0.1667

6

1

1/6≈0.1667

3

1

1/3≈0.3333

Total

6

6/6=1.0000

3

3/3=1.0000