Summaries

Session 1.3

2nd June 2010

Begin work on the Long Run Argument and Perfect Sample case types in 1st Hourly Stuff. Start to build your narratives.

We extend our study of probability to dice. We revisit the idea of a model or population proportion as a probability, and introduce the idea of a random variable.

Models

A Fair, Six-sided Die

Face Value, d6 (FV d6)

Probability

1

1/6

2

1/6

3

1/6

4

1/6

5

1/6

6

1/6

 

Using a Fair, Six-sided Die to Simulate A Fair, Three-sided Die

Face Value, d6 (FV d6)

Mapped Face Value, d3 (FV d3)

1

1

2

3

2

4

5

3

6

 

 

 

A Fair, Three-sided Die

Face Value, d3 (FV d3)

Probability

1

1/3

2

1/3

3

1/3

 

 

Probability Calculations (fair d6fair d3)

Pr{E} denotes Probability for the event E.

The Fair d6 Model

FV: Face Values: 1,2,3,4,5,6

Fair Model: Equally likely face values – 1/6 per face value

 

Pr{d6 Shows 1} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “1”.

 

Pr{d6 Shows 2} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “2”.

 

Pr{d6 Shows 3} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “3”.

 

Pr{d6 Shows 4} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “4”.

 

Pr{d6 Shows 5} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “5”.

 

Pr{d6 Shows 6} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “6”.

 

 

The Fair d3 Model Nested within a Fair d6 Model

 

FV: Face Values: 1(1,2), 2(3,4), 3(5,6)

Fair Model: Equally likely face values –  (2/6 =)1/3 per face value.

 

 

Pr{d3 shows “1”} = Pr{d6 Shows 1} + Pr{d6 Shows 2}1 = (1/6) + (1/6) = 2/6

= 1/3 @ .3333 or 33.33%

 

In long runs of tosses, approximately 1 toss in 3 shows “1”.

 

 

Pr{d3 shows “2”} = Pr{d6 Shows 3} + Pr{d6 Shows 4} = (1/6) + (1/6)2 = 2/6

= 1/3 @ .3333 or 33.33%

 

In long runs of tosses, approximately 1 toss in 3 shows “2”.

 

 

Pr{d3 shows “3”} = Pr{d6 Shows 5} + Pr{d6 Shows 6} = (1/6) + (1/6) = 2/6

= 1/33 @ .3333 or 33.33%

 

In long runs of tosses, approximately 1 toss in 3 shows “3”.

 

 

 Probability Computational Rules

 

1. Additive Rule – Map Faces to Faces

2. Inheritance of Fair Model

3. Fair d3 Model from Fair d6 Model

 

D6/D3 Worksheet

 

50 Tosses per Sample (n=50)

Sample Grid – One Toss per Cell

0X

X2

X3

X4

X5

X6

X7

X8

X9

X9

2

 

 

 

 

 

 

 

 

X

3

 

 

 

 

 

 

 

 

X

4

 

 

 

 

 

 

 

 

X

5

 

 

 

 

 

 

 

 

 

 

Case Steps:

Toss Die

Note D6 Face Value

Map D6 to D3 and Note D3 Face Value:

D6 Face Value Þ D3 Face Value

1, 2 Þ 1               

3, 4 Þ 2

5, 6 Þ 3

 

D6 Face Value

Count

D3 Face Value

Count

1

 

1

 

2

 

3

 

2

 

4

 

5

 

3

 

6

 

Total

 

Total

 

Sample Table

Sample #1

Sample #2

Pooled 12

d6

n

p

d3

n

p

n

p

n

p

n

p

n

p

1

9

9/50=0.18

7

0.14

9+7=16

0.16

2

10

10/50=0.20

1

9+10=19

0.38

8

0.16

15

0.30

10+8=18

0.18

34

34/100=0.34

3

10

10/50=0.20

9

0.18

10+9=19

0.19

4

5

5/50=0.10

2

10+5=15

0.30

6

0.12

15

0.30

5+6=11

0.11

30

30/100=0.30

5

7

7/50=0.14

10

0.20

7+10=17

0.17

6

9

9/18=0.18

3

7+9=16

0.32

10

0.20

20

0.40

9+10=19

0.19

36

36/100=0.36

Total

50

50/50=1.00

50

1.00

50

1.00

50

1.00

50+50=100

1.00

100

1.00

Sample #3

Sample #4

Pooled 34

d6

n

p

d3

n

p

n

p

n

p

n

p

n

P

1

12

0.24

12

0.24

24

0.24

2

8

0.16

1

20

0.40

6

0.12

18

0.36

14

0.14

38

0.38

3

11

0.22

9

0.18

20

0.20

4

6

0.12

2

17

0.34

7

0.14

16

0.32

13

0.13

33

0.33

5

8

0.16

8

0.16

16

0.16

6

5

0.10

3

13

0.26

8

0.16

16

0.32

13

0.13

29

0.29

Total

50

1.00

50

1.00

50

1.00

50

1.00

100

1.00

100

1.00

Sample #5

Sample #6

Pooled 56

d6

n

p

d3

n

p

n

p

n

p

n

p

n

P

1

8

0.16

7

0.14

15

0.15

2

11

0.22

1

19

0.38

10

0.20

17

0.34

21

0.21

36

0.36

3

8

0.16

9

0.18

17

0.17

4

10

0.20

2

18

0.36

5

0.10

14

0.28

15

0.15

32

0.32

5

6

0.12

9

0.18

15

0.15

6

7

0.14

3

13

0.26

10

0.20

19

0.38

17

0.17

32

0.32

Total

50

1.00

50

1.00

50

1.00

50

1.00

100

1.00

100

1.00

Pooled 135

Pooled 246

Pooled All

d6

n

p

d3

n

p

n

p

n

p

n

p

n

P

1

29

0.19

26

0.17

55

0.18

2

29

0.19

1

58

0.39

24

0.16

50

0.33

53

0.18

55+53=108

108/300=0.36

3

29

0.19

27

0.18

56

0.19

4

21

0.14

2

50

0.33

18

0.12

45

0.30

39

0.13

56+39=95

95/300=0.32

5

21

0.14

27

0.18

48

0.16

6

21

0.14

3

42

0.28

28

0.19

55

0.37

49

0.16

48+49=97

97/300=0.32

Total

150

1.00

150

1.00

150

1.00

150

1.00

300

1.00

300

1.00

 

Compare the correspondence of the sample proportions (p) to the model probabilities (P).

 

Fair Models

d6

N

P

d3

N

P

1

1

1/6≈0.1667

2

1

1/6≈0.1667

1

1

1/3≈0.3333

3

1

1/6≈0.1667

4

1

1/6≈0.1667

2

1

1/3≈0.3333

5

1

1/6≈0.1667

6

1

1/6≈0.1667

3

1

1/3≈0.3333

Total

6

6/6=1.0000

3

3/3=1.0000