Summaries
Session 1.3
31st January 2011
Continue work on the Long Run
Argument and Perfect Sample case types in 1st Hourly Stuff. Start to build your narratives.
We extend our study of probability
to dice. We revisit the idea of a model or population proportion as a
probability, and introduce the idea of a random variable.
Models
A Fair, Six-sided Die
|
Using a Fair, Six-sided Die to
Simulate A Fair, Three-sided Die
|
|||||||||||||||||||||||||
A Fair, Three-sided Die
|
Probability Calculations (fair d6→ fair d3)
Pr{E} denotes Probability for the event E.
The Fair d6 Model
FV: Face Values: 1,2,3,4,5,6
Fair Model: Equally
likely face values – 1/6 per face value
Pr{d6 Shows 1} = (1/6)
@ .1667 or 16.67% In long runs of tosses,
approximately 1 toss in 6 shows “1”. |
Pr{d6 Shows 2} = (1/6)
@ .1667 or 16.67% In long runs of tosses,
approximately 1 toss in 6 shows “2”. |
Pr{d6 Shows 3} = (1/6)
@ .1667 or 16.67% In long runs of tosses,
approximately 1 toss in 6 shows “3”. |
Pr{d6 Shows 4} = (1/6)
@ .1667 or 16.67% In long runs of tosses,
approximately 1 toss in 6 shows “4”. |
Pr{d6 Shows 5} = (1/6)
@ .1667 or 16.67% In long runs of tosses,
approximately 1 toss in 6 shows “5”. |
Pr{d6 Shows 6} = (1/6)
@ .1667 or 16.67% In long runs of tosses,
approximately 1 toss in 6 shows “6”. |
The
Fair d3 Model Nested within a Fair d6 Model
FV: Face Values: 1(1,2), 2(3,4), 3(5,6)
Fair Model: Equally
likely face values – (2/6 =)1/3 per face value.
Pr{d3 shows “1”} = Pr{d6 Shows 1} + Pr{d6
Shows 2}1 = (1/6) + (1/6) = 2/6 = 1/3 @
.3333 or 33.33% In long runs of
tosses, approximately 1 toss in 3 shows “1”. |
Pr{d3 shows “2”} = Pr{d6 Shows 3} + Pr{d6 Shows
4} = (1/6) + (1/6)2 = 2/6 = 1/3 @
.3333 or 33.33% In long runs of
tosses, approximately 1 toss in 3 shows “2”. |
Pr{d3 shows “3”} = Pr{d6 Shows 5} + Pr{d6 Shows 6}
= (1/6) + (1/6) = 2/6 = 1/33 @ .3333 or 33.33% In long runs of
tosses, approximately 1 toss in 3 shows “3”. |
Probability Computational Rules
1. Additive Rule – Map Faces to
Faces
2. Inheritance of Fair Model
3. Fair d3 Model from Fair d6 Model
D6/D3 Worksheet
50 Tosses per Sample (n=50)
Sample Grid – One Toss per Cell
0X |
X2 |
X3 |
X4 |
X5 |
X6 |
X7 |
X8 |
X9 |
X9 |
2 |
|
|
|
|
|
|
|
|
X |
3 |
|
|
|
|
|
|
|
|
X |
4 |
|
|
|
|
|
|
|
|
X |
5 |
|
|
|
|
|
|
|
|
|
Case Steps:
Toss Die
Note D6 Face Value
Map D6 to D3 and Note D3 Face Value:
D6
Face Value Þ D3 Face Value
1,
2 Þ
1
3,
4 Þ 2
5,
6 Þ 3
D6 Face Value |
Count |
D3 Face Value |
Count |
1 |
|
1 |
|
2 |
|
||
3 |
|
2 |
|
4 |
|
||
5 |
|
3 |
|
6 |
|
||
Total |
|
Total |
|
Sample
Tables
6:30
Samples
Sample #1 |
Sample #2 |
Pooled 12 |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
10 |
0.2000 |
0.1667 |
6 |
0.1200 |
16 |
0.1600 |
||||||||
2 |
5 |
0.1000 |
0.1667 |
1 |
15 |
0.3000 |
0.3333 |
9 |
0.1800 |
15 |
0.3000 |
14 |
0.1400 |
30 |
0.3000 |
3 |
15 |
0.3000 |
0.1667 |
7 |
0.1400 |
22 |
0.2200 |
||||||||
4 |
8 |
0.1600 |
0.1667 |
2 |
23 |
0.4600 |
0.3333 |
9 |
0.1800 |
16 |
0.3200 |
17 |
0.1700 |
39 |
0.3900 |
5 |
5 |
0.1000 |
0.1667 |
11 |
0.2200 |
16 |
0.1600 |
||||||||
6 |
7 |
0.1400 |
0.1667 |
3 |
12 |
0.2400 |
0.3333 |
8 |
0.1600 |
19 |
0.3800 |
15 |
0.1500 |
31 |
0.3100 |
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
|||
Sample #3 |
Sample #4 |
Pooled 34 |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
7 |
0.1400 |
0.1667 |
11 |
0.2200 |
18 |
0.1800 |
||||||||
2 |
10 |
0.2000 |
0.1667 |
1 |
17 |
0.3400 |
0.3333 |
11 |
0.2200 |
22 |
0.4400 |
21 |
0.2100 |
39 |
0.3900 |
3 |
3 |
0.0600 |
0.1667 |
5 |
0.1000 |
8 |
0.0800 |
||||||||
4 |
10 |
0.2000 |
0.1667 |
2 |
13 |
0.2600 |
0.3333 |
8 |
0.1600 |
13 |
0.2600 |
18 |
0.1800 |
26 |
0.2600 |
5 |
8 |
0.1600 |
0.1667 |
12 |
0.2400 |
20 |
0.2000 |
||||||||
6 |
12 |
0.2400 |
0.1667 |
3 |
20 |
0.4000 |
0.3333 |
3 |
0.0600 |
15 |
0.3000 |
15 |
0.1500 |
35 |
0.3500 |
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
|||
Sample #5 |
Sample #6 |
Pooled 56 |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
10 |
0.2000 |
0.1667 |
12 |
0.2400 |
22 |
0.2200 |
||||||||
2 |
7 |
0.1400 |
0.1667 |
1 |
17 |
0.3400 |
0.3333 |
6 |
0.1200 |
18 |
0.3600 |
13 |
0.1300 |
35 |
0.3500 |
3 |
7 |
0.1400 |
0.1667 |
7 |
0.1400 |
14 |
0.1400 |
||||||||
4 |
8 |
0.1600 |
0.1667 |
2 |
15 |
0.3000 |
0.3333 |
8 |
0.1600 |
15 |
0.3000 |
16 |
0.1600 |
30 |
0.3000 |
5 |
10 |
0.2000 |
0.1667 |
9 |
0.1800 |
19 |
0.1900 |
||||||||
6 |
8 |
0.1600 |
0.1667 |
3 |
18 |
0.3600 |
0.3333 |
8 |
0.1600 |
17 |
0.3400 |
16 |
0.1600 |
35 |
0.3500 |
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
|||
Pooled 135 |
Pooled 246 |
Pooled All |
|||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
1 |
27 |
0.1800 |
0.1667 |
29 |
0.1933 |
56 |
0.1867 |
||||||||
2 |
22 |
0.1467 |
0.1667 |
1 |
49 |
0.3267 |
0.3333 |
26 |
0.1733 |
55 |
0.3667 |
48 |
0.1600 |
104 |
0.3467 |
3 |
25 |
0.1667 |
0.1667 |
19 |
0.1267 |
44 |
0.1467 |
||||||||
4 |
26 |
0.1733 |
0.1667 |
2 |
51 |
0.3400 |
0.3333 |
25 |
0.1667 |
44 |
0.2933 |
51 |
0.1700 |
95 |
0.3167 |
5 |
23 |
0.1533 |
0.1667 |
32 |
0.2133 |
55 |
0.1833 |
||||||||
6 |
27 |
0.1800 |
0.1667 |
3 |
50 |
0.3333 |
0.3333 |
19 |
0.1267 |
51 |
0.3400 |
46 |
0.1533 |
101 |
0.3367 |
Total |
150 |
1.0000 |
150 |
1.0000 |
150 |
1.0000 |
150 |
1.0000 |
300 |
1.0000 |
300 |
1.0000 |
8:00
Samples
Sample #1 |
Sample #2 |
Pooled 12 |
||||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
|
1 |
10 |
0.2000 |
0.1667 |
10 |
0.2000 |
20 |
0.2000 |
|||||||||
2 |
10 |
0.2000 |
0.1667 |
1 |
20 |
0.4000 |
0.3333 |
6 |
0.1200 |
16 |
0.3200 |
16 |
0.1600 |
36 |
0.3600 |
|
3 |
4 |
0.0800 |
0.1667 |
9 |
0.1800 |
13 |
0.1300 |
|||||||||
4 |
7 |
0.1400 |
0.1667 |
2 |
11 |
0.2200 |
0.3333 |
12 |
0.2400 |
21 |
0.4200 |
19 |
0.1900 |
32 |
0.3200 |
|
5 |
12 |
0.2400 |
0.1667 |
8 |
0.1600 |
20 |
0.2000 |
|||||||||
6 |
7 |
0.1400 |
0.1667 |
3 |
19 |
0.3800 |
0.3333 |
5 |
0.1000 |
13 |
0.2600 |
12 |
0.1200 |
32 |
0.3200 |
|
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
||||
Sample #3 |
Sample #4 |
Pooled 34 |
||||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
|
1 |
5 |
0.1000 |
0.1667 |
6 |
0.1200 |
11 |
0.1100 |
|||||||||
2 |
7 |
0.1400 |
0.1667 |
1 |
12 |
0.2400 |
0.3333 |
10 |
0.2000 |
16 |
0.3200 |
17 |
0.1700 |
28 |
0.2800 |
|
3 |
5 |
0.1000 |
0.1667 |
11 |
0.2200 |
16 |
0.1600 |
|||||||||
4 |
10 |
0.2000 |
0.1667 |
2 |
15 |
0.3000 |
0.3333 |
9 |
0.1800 |
20 |
0.4000 |
19 |
0.1900 |
35 |
0.3500 |
|
5 |
11 |
0.2200 |
0.1667 |
7 |
0.1400 |
18 |
0.1800 |
|||||||||
6 |
12 |
0.2400 |
0.1667 |
3 |
23 |
0.4600 |
0.3333 |
7 |
0.1400 |
14 |
0.2800 |
19 |
0.1900 |
37 |
0.3700 |
|
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
||||
Sample #5 |
Sample #6 |
Pooled 56 |
||||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
|
1 |
6 |
0.1200 |
0.1667 |
7 |
0.1400 |
13 |
0.1300 |
|||||||||
2 |
8 |
0.1600 |
0.1667 |
1 |
14 |
0.2800 |
0.3333 |
9 |
0.1800 |
16 |
0.3200 |
17 |
0.1700 |
30 |
0.3000 |
|
3 |
16 |
0.3200 |
0.1667 |
10 |
0.2000 |
26 |
0.2600 |
|||||||||
4 |
9 |
0.1800 |
0.1667 |
2 |
25 |
0.5000 |
0.3333 |
4 |
0.0800 |
14 |
0.2800 |
13 |
0.1300 |
39 |
0.3900 |
|
5 |
4 |
0.0800 |
0.1667 |
13 |
0.2600 |
17 |
0.1700 |
|||||||||
6 |
7 |
0.1400 |
0.1667 |
3 |
11 |
0.2200 |
0.3333 |
7 |
0.1400 |
20 |
0.4000 |
14 |
0.1400 |
31 |
0.3100 |
|
Total |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
50 |
1.0000 |
100 |
1.0000 |
100 |
1.0000 |
||||
Pooled 135 |
Pooled 246 |
Pooled All |
||||||||||||||
d6 |
n |
p |
P |
d3 |
n |
p |
P |
n |
p |
n |
p |
n |
p |
n |
p |
|
1 |
21 |
0.1400 |
0.1667 |
23 |
0.1533 |
44 |
0.1467 |
|||||||||
2 |
25 |
0.1667 |
0.1667 |
1 |
46 |
0.3067 |
0.3333 |
25 |
0.1667 |
48 |
0.3200 |
50 |
0.1667 |
94 |
0.3133 |
|
3 |
25 |
0.1667 |
0.1667 |
30 |
0.2000 |
55 |
0.1833 |
|||||||||
4 |
26 |
0.1733 |
0.1667 |
2 |
51 |
0.3400 |
0.3333 |
25 |
0.1667 |
55 |
0.3667 |
51 |
0.1700 |
106 |
0.3533 |
|
5 |
27 |
0.1800 |
0.1667 |
28 |
0.1867 |
55 |
0.1833 |
|||||||||
6 |
26 |
0.1733 |
0.1667 |
3 |
53 |
0.3533 |
0.3333 |
19 |
0.1267 |
47 |
0.3133 |
45 |
0.1500 |
100 |
0.3333 |
|
Total |
150 |
1.0000 |
150 |
1.0000 |
150 |
1.0000 |
150 |
1.0000 |
300 |
1.0000 |
300 |
1.0000 |
||||
Compare the correspondence of the
sample proportions (p) to the model probabilities (P).
Fair
Models |
|||||
d6 |
N |
P |
d3 |
N |
P |
1 |
1 |
1/6≈0.1667 |
|||
2 |
1 |
1/6≈0.1667 |
1 |
1 |
1/3≈0.3333 |
3 |
1 |
1/6≈0.1667 |
|||
4 |
1 |
1/6≈0.1667 |
2 |
1 |
1/3≈0.3333 |
5 |
1 |
1/6≈0.1667 |
|||
6 |
1 |
1/6≈0.1667 |
3 |
1 |
1/3≈0.3333 |
Total |
6 |
6/6=1.0000 |
3 |
3/3=1.0000 |