Summaries

Session 1.3

31st January 2011

Continue work on the Long Run Argument and Perfect Sample case types in 1st Hourly Stuff. Start to build your narratives.

We extend our study of probability to dice. We revisit the idea of a model or population proportion as a probability, and introduce the idea of a random variable.

Models

A Fair, Six-sided Die

Face Value, d6 (FV d6)

Probability

1

1/6

2

1/6

3

1/6

4

1/6

5

1/6

6

1/6

 

Using a Fair, Six-sided Die to Simulate A Fair, Three-sided Die

Face Value, d6 (FV d6)

Mapped Face Value, d3 (FV d3)

1

1

2

3

2

4

5

3

6

 

 

 

A Fair, Three-sided Die

Face Value, d3 (FV d3)

Probability

1

1/3

2

1/3

3

1/3

 

 

Probability Calculations (fair d6fair d3)

Pr{E} denotes Probability for the event E.

The Fair d6 Model

FV: Face Values: 1,2,3,4,5,6

Fair Model: Equally likely face values – 1/6 per face value

 

Pr{d6 Shows 1} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “1”.

 

Pr{d6 Shows 2} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “2”.

 

Pr{d6 Shows 3} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “3”.

 

Pr{d6 Shows 4} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “4”.

 

Pr{d6 Shows 5} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “5”.

 

Pr{d6 Shows 6} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “6”.

 

 

The Fair d3 Model Nested within a Fair d6 Model

 

FV: Face Values: 1(1,2), 2(3,4), 3(5,6)

Fair Model: Equally likely face values –  (2/6 =)1/3 per face value.

 

 

Pr{d3 shows “1”} = Pr{d6 Shows 1} + Pr{d6 Shows 2}1 = (1/6) + (1/6) = 2/6

= 1/3 @ .3333 or 33.33%

 

In long runs of tosses, approximately 1 toss in 3 shows “1”.

 

 

Pr{d3 shows “2”} = Pr{d6 Shows 3} + Pr{d6 Shows 4} = (1/6) + (1/6)2 = 2/6

= 1/3 @ .3333 or 33.33%

 

In long runs of tosses, approximately 1 toss in 3 shows “2”.

 

 

Pr{d3 shows “3”} = Pr{d6 Shows 5} + Pr{d6 Shows 6} = (1/6) + (1/6) = 2/6

= 1/33 @ .3333 or 33.33%

 

In long runs of tosses, approximately 1 toss in 3 shows “3”.

 

 

 Probability Computational Rules

 

1. Additive Rule – Map Faces to Faces

2. Inheritance of Fair Model

3. Fair d3 Model from Fair d6 Model

 

D6/D3 Worksheet

50 Tosses per Sample (n=50)

Sample Grid – One Toss per Cell

0X

X2

X3

X4

X5

X6

X7

X8

X9

X9

2

 

 

 

 

 

 

 

 

X

3

 

 

 

 

 

 

 

 

X

4

 

 

 

 

 

 

 

 

X

5

 

 

 

 

 

 

 

 

 

 

Case Steps:

Toss Die

Note D6 Face Value

Map D6 to D3 and Note D3 Face Value:

D6 Face Value Þ D3 Face Value

1, 2 Þ 1               

3, 4 Þ 2

5, 6 Þ 3

 

D6 Face Value

Count

D3 Face Value

Count

1

 

1

 

2

 

3

 

2

 

4

 

5

 

3

 

6

 

Total

 

Total

 

Sample Tables

6:30 Samples

Sample #1

Sample #2

Pooled 12

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

10

0.2000

0.1667

6

0.1200

16

0.1600

2

5

0.1000

0.1667

1

15

0.3000

0.3333

9

0.1800

15

0.3000

14

0.1400

30

0.3000

3

15

0.3000

0.1667

7

0.1400

22

0.2200

4

8

0.1600

0.1667

2

23

0.4600

0.3333

9

0.1800

16

0.3200

17

0.1700

39

0.3900

5

5

0.1000

0.1667

11

0.2200

16

0.1600

6

7

0.1400

0.1667

3

12

0.2400

0.3333

8

0.1600

19

0.3800

15

0.1500

31

0.3100

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Sample #3

Sample #4

Pooled 34

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

7

0.1400

0.1667

11

0.2200

18

0.1800

2

10

0.2000

0.1667

1

17

0.3400

0.3333

11

0.2200

22

0.4400

21

0.2100

39

0.3900

3

3

0.0600

0.1667

5

0.1000

8

0.0800

4

10

0.2000

0.1667

2

13

0.2600

0.3333

8

0.1600

13

0.2600

18

0.1800

26

0.2600

5

8

0.1600

0.1667

12

0.2400

20

0.2000

6

12

0.2400

0.1667

3

20

0.4000

0.3333

3

0.0600

15

0.3000

15

0.1500

35

0.3500

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Sample #5

Sample #6

Pooled 56

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

10

0.2000

0.1667

12

0.2400

22

0.2200

2

7

0.1400

0.1667

1

17

0.3400

0.3333

6

0.1200

18

0.3600

13

0.1300

35

0.3500

3

7

0.1400

0.1667

7

0.1400

14

0.1400

4

8

0.1600

0.1667

2

15

0.3000

0.3333

8

0.1600

15

0.3000

16

0.1600

30

0.3000

5

10

0.2000

0.1667

9

0.1800

19

0.1900

6

8

0.1600

0.1667

3

18

0.3600

0.3333

8

0.1600

17

0.3400

16

0.1600

35

0.3500

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Pooled 135

Pooled 246

Pooled All

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

27

0.1800

0.1667

29

0.1933

56

0.1867

2

22

0.1467

0.1667

1

49

0.3267

0.3333

26

0.1733

55

0.3667

48

0.1600

104

0.3467

3

25

0.1667

0.1667

19

0.1267

44

0.1467

4

26

0.1733

0.1667

2

51

0.3400

0.3333

25

0.1667

44

0.2933

51

0.1700

95

0.3167

5

23

0.1533

0.1667

32

0.2133

55

0.1833

6

27

0.1800

0.1667

3

50

0.3333

0.3333

19

0.1267

51

0.3400

46

0.1533

101

0.3367

Total

150

1.0000

150

1.0000

150

1.0000

150

1.0000

300

1.0000

300

1.0000

 

 

8:00 Samples

 

Sample #1

Sample #2

Pooled 12

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

10

0.2000

0.1667

10

0.2000

20

0.2000

2

10

0.2000

0.1667

1

20

0.4000

0.3333

6

0.1200

16

0.3200

16

0.1600

36

0.3600

3

4

0.0800

0.1667

9

0.1800

13

0.1300

4

7

0.1400

0.1667

2

11

0.2200

0.3333

12

0.2400

21

0.4200

19

0.1900

32

0.3200

5

12

0.2400

0.1667

8

0.1600

20

0.2000

6

7

0.1400

0.1667

3

19

0.3800

0.3333

5

0.1000

13

0.2600

12

0.1200

32

0.3200

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Sample #3

Sample #4

Pooled 34

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

5

0.1000

0.1667

6

0.1200

11

0.1100

2

7

0.1400

0.1667

1

12

0.2400

0.3333

10

0.2000

16

0.3200

17

0.1700

28

0.2800

3

5

0.1000

0.1667

11

0.2200

16

0.1600

4

10

0.2000

0.1667

2

15

0.3000

0.3333

9

0.1800

20

0.4000

19

0.1900

35

0.3500

5

11

0.2200

0.1667

7

0.1400

18

0.1800

6

12

0.2400

0.1667

3

23

0.4600

0.3333

7

0.1400

14

0.2800

19

0.1900

37

0.3700

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Sample #5

Sample #6

Pooled 56

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

6

0.1200

0.1667

7

0.1400

13

0.1300

2

8

0.1600

0.1667

1

14

0.2800

0.3333

9

0.1800

16

0.3200

17

0.1700

30

0.3000

3

16

0.3200

0.1667

10

0.2000

26

0.2600

4

9

0.1800

0.1667

2

25

0.5000

0.3333

4

0.0800

14

0.2800

13

0.1300

39

0.3900

5

4

0.0800

0.1667

13

0.2600

17

0.1700

6

7

0.1400

0.1667

3

11

0.2200

0.3333

7

0.1400

20

0.4000

14

0.1400

31

0.3100

Total

50

1.0000

50

1.0000

50

1.0000

50

1.0000

100

1.0000

100

1.0000

Pooled 135

Pooled 246

Pooled All

d6

n

p

P

d3

n

p

P

n

p

n

p

n

p

n

p

1

21

0.1400

0.1667

23

0.1533

44

0.1467

2

25

0.1667

0.1667

1

46

0.3067

0.3333

25

0.1667

48

0.3200

50

0.1667

94

0.3133

3

25

0.1667

0.1667

30

0.2000

55

0.1833

4

26

0.1733

0.1667

2

51

0.3400

0.3333

25

0.1667

55

0.3667

51

0.1700

106

0.3533

5

27

0.1800

0.1667

28

0.1867

55

0.1833

6

26

0.1733

0.1667

3

53

0.3533

0.3333

19

0.1267

47

0.3133

45

0.1500

100

0.3333

Total

150

1.0000

150

1.0000

150

1.0000

150

1.0000

300

1.0000

300

1.0000

 

Compare the correspondence of the sample proportions (p) to the model probabilities (P).

 

Fair Models

d6

N

P

d3

N

P

1

1

1/6≈0.1667

2

1

1/6≈0.1667

1

1

1/3≈0.3333

3

1

1/6≈0.1667

4

1

1/6≈0.1667

2

1

1/3≈0.3333

5

1

1/6≈0.1667

6

1

1/6≈0.1667

3

1

1/3≈0.3333

Total

6

6/6=1.0000

3

3/3=1.0000