7th June 2010
/ Session 1.3
Last
Look at Long Run Interpretation / Perfect Samples
From
here: http://www.mindspring.com/~cjalverson/_1sthourlyfall2008_VBKey.htm
Case Two | Long Run
Argument, Perfect Samples | Birthweight
Low birthweight
is a strong marker of complications in liveborn
infants. Low birthweight is strongly associated with
a number of complications, including infant mortality, incomplete and impaired organ
development and a number of birth defects. Suppose that the following
probability model applies to year 2005 United States Resident Live Births:
Birthweight Status |
Probability |
Very Low Birthweight (<1500g) |
.016 |
Low Birthweight (1500g
≤ Birthweight < 2500g) |
.067 |
Full Birthweight (≥ 2500g) |
.917 |
Total |
1.00 |
Each row of the model
yields a statement about an event within a population.
Interpret each
probability using the Long Run Argument.
Clearly specify both the event
and the population in an indefinite random sampling context.
In long runs of random sampling of US resident
Live Births during year 2005, approximately 1.6% of sampled births present birthweights strictly below 1500 grams.
In long runs of random sampling of US resident
Live Births during year 2005, approximately 6.7% of sampled births present birthweights of 1500 grams or greater, but strictly below
2500 grams.
In long runs of random sampling of US resident
Live Births during year 2005, approximately 91.7% of sampled births present birthweights of 2500 grams or greater.
Compute and discuss Perfect Samples for n=2000.
Show full detail in computing an expected count
for each event in the model.
Very Low Birthweight: EVLB
= 2000*Pr
Low Birthweight: ELB
= 2000*Pr
Full Birthweight: EFB
= 2000*Pr
Clearly specify both the
event and the population in the specific random sampling context.
In random samples of 2000 US resident Live Births
during year 2005, approximately 32 of the sampled births present birthweights strictly below 1500 grams.
In random samples of 2000 US resident Live
Births during year 2005, approximately 134 of sampled births present birthweights of 1500 grams or greater, but strictly below
2500 grams.
In random samples of
2000 US resident Live Births during year 2005, approximately 1834 of sampled
births present birthweights of 2500 grams or greater.
Probability
Rules
Computing
Probabilities Algebraically
A Probability function Pr
Domain: D
Range: R
For each event E in D
Pr: D(Event
Space) ® PS(Probability Space)
Any event E with Pr
Events E with Pr
Any event E with Pr
Probability Rules: A Fair, Six-sided Die
Begin
with a die with six sides: 1,2,3,4,5,6. Suppose that
this die is fair - that each face has an equal chance of showing in tosses of
the die. From earlier discussions, this table shouldn't require much
explanation:
Face Value |
Probability (Proportion) |
Probability (Percentage) |
1 |
1/6 |
100*(1/6) » 16.67% |
2 |
1/6 |
100*(1/6) » 16.67% |
3 |
1/6 |
100*(1/6) » 16.67% |
4 |
1/6 |
100*(1/6) » 16.67% |
5 |
1/6 |
100*(1/6) » 16.67% |
6 |
1/6 |
100*(1/6) » 16.67% |
Total |
6/6 |
100*(6/6) » 100%** |
The Fair d6 Model
FV: Face Values: 1, 2, 3,
4, 5, 6
Fair Model: Equally
likely face values – 1/6 per face value
Pr
In long runs of tosses,
approximately 1 toss in 6 shows “1”.
Pr
In long runs of tosses,
approximately 1 toss in 6 shows “2”.
Pr
In long runs of tosses,
approximately 1 toss in 6 shows “3”.
Pr
In long runs of tosses,
approximately 1 toss in 6 shows “4”.
Pr
In long runs of tosses,
approximately 1 toss in 6 shows “5”.
Pr
In long runs of tosses,
approximately 1 toss in 6 shows “6”.
Basic Events
In repeated tosses of our die, the most basic possible outcomes
are the faces themselves - the individual face values are the basic events.
Each basic event has the same probability - (1/6).
Additive Rule: first, write down the simple events which form the event. Then,
add the probabilities for each of those simple events - this total is the
probability for the event.
Pr
Define the event EVEN as follows: "an even face (2,4,6)
shows". Then the probability of the event EVEN can be computed as
Pr
Complementary Rule: first, write down the opposite of the event. Next, write down
the simple events which form the opposite event. Then, add the probabilities
for each of those simple events - this total is the probability for the
opposite event. Finally, subtract the probability for the opposite event from
1. The result of this subtraction is the probability for the original event.
Event=E
Opposite Event = ~E
Compute Pr
Then compute Pr
Define
the event 2PLUS as "a face greater than or
equal to 2 shows". Then its complementary event is Not2PLUS is "a
face strictly less than 2 shows", and can be computed as
Pr
Then compute the
probability for the event 2PLUS as :
Pr
Working directly,
Pr
Pr
Pr
(1/6) + (1/6) + (1/6) +
(1/6) + (1/6) = 5/6 ≈ .8333 or as 83.33%.
A Color Sequence
Experiment
Suppose
that we have a special box - each time we press a button on the box, it prints
out a sequence of colors, in order - it prints four colors at a time. Suppose the
box follows the following Probabilities for each Color Sequence:
The
Model
Color
Sequence (CS) |
Probability
(Proportion | Percent) |
BBBB |
.10
| 100*(.10) = 10% |
BGGB |
.25
| 100*(.25) = 25% |
RGGR |
.05
| 100*(.05) = 05% |
YYYY |
.30
| 100*(.30) = 30% |
BYRG |
.15
| 100*(.15) = 15% |
RYYB |
.15
| 100*(.15) = 15% |
Total |
1.00
| 100*(1.00) = 100% |
Let's define the experiment: We push
the button, and then the box prints out exactly one (1) of the above listed color
sequences. We then note the resulting (printed out) color sequence.
Let's discuss the simple (or basic)
events.
The simple events are the color
sequences. The probabilities for each color sequence are given in the table.
Suppose we define the event E=
The
only color sequence meeting the definition of E is the sequence BBBB.
So,
we write Pr
This
means that in long runs of box-prints, that approximately 10% of the prints
will show as BBBB.
Suppose
we define the event F=
The
event F merely requires that Yellow be present.
Yellow
is present in the following color sequences: YYYY, BYRG
and RYYB.
So
we write
Pr
Pr
Pr
.30+.15+.15
= .60 = 60%
In
long runs of box-prints, approximately 60% of prints will contain at least one
Yellow in the color sequence.
Suppose
we define the event G=
The
event G requires that Green be present in the 2nd slot.
This
requirement is met in the following color sequences: BGGB, RGGR.
So
we write
Pr
Pr
Pr
.25+.05
= .30 = 30%
In
long runs of box-prints, approximately 30% of prints will show green in the 2nd
slot.
Suppose
we define the event H=
The
event notH requires that the sequence lead off with
Red.
This
requirement is met in the following color sequences: RGGR, RYYB.
Pr
Pr
Pr
Pr
So,
Pr
So
in long runs of box-prints, approximately 80% of color sequences will not show
Red as the first color in the sequence.
Suppose
we define the event I=
The
event notI requires that the sequence end with Blue.
This
requirement is met in the following color sequences: BBBB, BGGB and RYYB.
Pr
Pr
Pr
Pr
.10
+ .25 + .15 = 50%.
So,
Pr
So
in long runs of box-prints, approximately 50% of color sequences will not show Blue
as the last color in the sequence.
Events
and Random Variables
Color
Sequence (CS) |
Probability
(Proportion | Percent) |
BBBB |
.10
| 100*(.10) = 10% |
BGGB |
.25
| 100*(.25) = 25% |
RGGR |
.05
| 100*(.05) = 05% |
YYYY |
.30
| 100*(.30) = 30% |
BYRG |
.15
| 100*(.15) = 15% |
RYYB |
.15
| 100*(.15) = 15% |
Total |
1.00
| 100*(1.00) = 100% |
Consider
the random variable Blue Count, defined as the number of blue slots showing in
the sequence. Blue Count groups the color sequences
based on common value.
Blue
Count |
Probability
(Proportion | Percent) |
4 |
.10
| 100*(.10) = 10% |
2 |
.25
| 100*(.25) = 25% |
0 |
.05
+ .30 = .35 | 35% |
1 |
.15
+ .15 = .30 | 30% |
Total |
1.00
| 100*(1.00) = 100% |
Blue
Count induces four events: Blue Count = 0, Blue Count = 1, Blue Count = 2, Blue
Count = 4. If you’re being picky, you might include an empty event for Blue
Count = 3.
Pr
Pr
Pr
Pr
Pr
Color
Sequence (CS) |
Probability
(Proportion | Percent) |
BBBB |
.10
| 100*(.10) = 10% |
BGGB |
.25
| 100*(.25) = 25% |
RGGR |
.05
| 100*(.05) = 05% |
YYYY |
.30
| 100*(.30) = 30% |
BYRG |
.15
| 100*(.15) = 15% |
RYYB |
.15
| 100*(.15) = 15% |
Total |
1.00
| 100*(1.00) = 100% |
Consider
the random variable Green Count, defined as the number of green slots showing
in the sequence. Green Count groups the color sequences based on common value.
Color
Sequence (CS) |
Probability
(Proportion | Percent) |
0 |
.10
+ .30 + .15 = .55| 55% |
2 |
.25
+ .05 = .30 | 30% |
1 |
.15
| 100*(.15) = 15% |
Total |
1.00
| 100*(1.00) = 100% |
Grren Count induces three events: Green Count = 0, Green Count =
1and Green Count = 2.
Pr
Pr
Pr
Pr
Pairs of Dice and Random Variables.
Case Study #1.7: Pairs
to Sums
Case Description: Work
with a random variable that acts on pairs of outcomes.
We assume that the dice
are fair, and that the dice operate separately and independently.
Case Study Objectives:
We toss a pair of fair
dice, one three-sided d3:(faces 1,2,3) and one four-sided d4:(faces 1,2,3,4).
How many pairs are
possible, and what is the probability for each pair ?
Fair D4 model
Face Value |
Probability |
1 |
1/4 |
2 |
1/4 |
3 |
1/4 |
4 |
1/4 |
Total |
4/4 |
Fair D3 model
Face Value |
Probability |
1 |
1/3 |
2 |
1/3 |
3 |
1/3 |
Total |
3/3 |
There are 4*3=12 distinct
pairs possible: Writing each pair as (d4 face value, d3 face value):
(1,1), (2,1), (3,1),
(4,1), (1,2), (2,2), (3,2), (4,2), (1,3), (2,3), (3,3), (4,3)
(d4,d3) |
1 |
2 |
3 |
4 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
Under the independent
multiplication principle,
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pair → Sum |
1 |
2 |
3 |
4 |
1 |
(1,1) → 2 |
(2,1) → 3 |
(3,1) → 4 |
(4,1) → 5 |
2 |
(1,2) →
3 |
(2,2) → 4 |
(3,2) → 5 |
(4,2) → 6 |
3 |
(1,3) →
4 |
(2,3) → 5 |
(3,3) → 6 |
(4,3) → 7 |
Compute probabilities for
each sum. Map the pairs to sums, and list the pairs that lead to each sum.
Using the probabilities for each pair, compute probabilities for each sum
value:
Pr
Pr
1/12
Pr
Pr
Pr
(1/12)+(1/12)=
2/12
Pr
Pr
Pr
(1/12)+(1/12) +(1/12)=
3/12
Pr
Pr
Pr
(1/12)+(1/12) +(1/12)=
3/12
Pr
Pr
Pr
(1/12)+(1/12)=
2/12
Pr
Pr
1/12
Case Study #1.8
Probability Computation
Rules
Case Description:
Compute selected probabilities associated with a pair of dice.
D4 model
Face Value |
Probability |
1 |
4/10 |
2 |
3/10 |
3 |
2/10 |
4 |
1/10 |
Total |
10/10 |
d3 model
Face Value |
Probability |
1 |
1/6 |
2 |
2/6 |
3 |
3/6 |
Total |
1.00 |
The experiment: On each trial
of the experiment, we toss the pair of dice (defined above) and observe the
pair of faces that show.
Case Objectives: Lay out
the possible face-pairs, and compute the probability for each pair. State any
required assumptions.
Consider the random variable
that maps the pair of face values into the sum of the face values.
The PAIR Model
There are 4*3=12 distinct
pairs possible: Writing each pair as (d4 face value, d3 face value):
(1,1), (2,1), (3,1),
(4,1), (1,2), (2,2), (3,2), (4,2), (1,3), (2,3), (3,3), (4,3)
(d4,d3) |
1 |
2 |
3 |
4 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
Under the independent
multiplication principle,
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
The SUM Model
Pair → Sum |
1 |
2 |
3 |
4 |
1 |
(1,1) → 2 |
(2,1) → 3 |
(3,1) → 4 |
(4,1) → 5 |
2 |
(1,2) → 3 |
(2,2) → 4 |
(3,2) → 5 |
(4,2) → 6 |
3 |
(1,3) → 4 |
(2,3) → 5 |
(3,3) → 6 |
(4,3) → 7 |
Pr
Pr
Pr
Pr
(3/60)+(8/60)=
11/60
Pr
Pr
Pr
(2/60)+(6/60)+(12/60)=
20/60
Pr
Pr
Pr
(1/60)+(4/60) +(9/60)=
14/60
Pr
Pr
Pr
8/60
Pr
Pr
3/60
Compare sample
proportions (p) to model probabilities (P). Compare precision with increasing
sample size.
Samples:
Fair Pair Model |
|
|
|
Loaded Pair Model |
|
|
|||
Sample #1 |
|
|
|
|
Sample #5 |
|
|
|
|
Sum |
n |
p |
P |
E |
Sum |
n |
p |
P |
E |
2 |
11 |
0.055 |
0.083 |
16.667 |
2 |
11 |
0.055 |
0.067 |
13.400 |
3 |
33 |
0.165 |
0.167 |
33.333 |
3 |
35 |
0.175 |
0.183 |
36.600 |
4 |
51 |
0.255 |
0.250 |
50.000 |
4 |
75 |
0.375 |
0.333 |
66.600 |
5 |
60 |
0.300 |
0.250 |
50.000 |
5 |
49 |
0.245 |
0.233 |
46.600 |
6 |
30 |
0.150 |
0.167 |
33.333 |
6 |
25 |
0.125 |
0.133 |
26.600 |
7 |
15 |
0.075 |
0.083 |
16.667 |
7 |
5 |
0.025 |
0.050 |
10.000 |
Total |
200 |
1 |
1 |
200 |
Total |
200 |
1 |
1 |
200 |
Sample #2 |
|
|
|
|
Sample #6 |
|
|
|
|
Sum |
n |
p |
P |
E |
Sum |
n |
p |
P |
E |
2 |
13 |
0.065 |
0.083 |
16.667 |
2 |
13 |
0.065 |
0.067 |
13.4 |
3 |
43 |
0.215 |
0.167 |
33.333 |
3 |
34 |
0.17 |
0.183 |
36.6 |
4 |
57 |
0.285 |
0.250 |
50.000 |
4 |
77 |
0.385 |
0.333 |
66.6 |
5 |
49 |
0.245 |
0.250 |
50.000 |
5 |
40 |
0.2 |
0.233 |
46.6 |
6 |
23 |
0.115 |
0.167 |
33.333 |
6 |
27 |
0.135 |
0.133 |
26.6 |
7 |
15 |
0.075 |
0.083 |
16.667 |
7 |
9 |
0.045 |
0.05 |
10 |
Total |
200 |
1 |
1 |
200 |
Total |
200 |
1 |
1 |
200 |
Sample #3 |
|
|
|
|
|
|
|
|
|
Sum |
n |
p |
P |
E |
|
|
|
|
|
2 |
25 |
0.125 |
0.083 |
16.667 |
|
|
|
|
|
3 |
28 |
0.140 |
0.167 |
33.333 |
|
|
|
|
|
4 |
56 |
0.280 |
0.250 |
50.000 |
|
|
|
|
|
5 |
48 |
0.240 |
0.250 |
50.000 |
|
|
|
|
|
6 |
37 |
0.185 |
0.167 |
33.333 |
|
|
|
|
|
7 |
6 |
0.030 |
0.083 |
16.667 |
|
|
|
|
|
Total |
200 |
1 |
1 |
200 |
|
|
|
|
|
Pooled 123 |
|
|
|
|
Pooled 56 |
|
|
||
Sum |
n |
p |
P |
E |
Sum |
n |
p |
P |
E |
2 |
49 |
0.082 |
0.083 |
50.000 |
2 |
24 |
0.060 |
0.067 |
26.800 |
3 |
104 |
0.173 |
0.167 |
100.000 |
3 |
69 |
0.173 |
0.183 |
73.200 |
4 |
164 |
0.273 |
0.250 |
150.000 |
4 |
152 |
0.380 |
0.333 |
133.200 |
5 |
157 |
0.262 |
0.250 |
150.000 |
5 |
89 |
0.223 |
0.233 |
93.200 |
6 |
90 |
0.150 |
0.167 |
100.000 |
6 |
52 |
0.130 |
0.133 |
53.200 |
7 |
36 |
0.060 |
0.083 |
50.000 |
7 |
14 |
0.035 |
0.050 |
20.000 |
Total |
600 |
1 |
1 |
600 |
Total |
400 |
1 |
1 |
400 |
We’re seeing the pair model
inheriting its probability structure from the individual dice. The random
variable in turn inherits its probability structure from the pair model.
Rare
Events
The Scale of Probability
Probabilities range from
0 to 1.
Pr
Pr
Pr
Pr
Pr
Pr
Pr
The Rare Event Approach
An event is rare
if
Pr
The implications for
observing rare events in random samples are important. In particular, we can
say that the smallest sample size in which we expect to reliably observe a rare
event depends on its true probability. That is:
n ≥ 1/ Pr
Rare Event Approach: Pairs of
Dice and the Pair (1,1) Consider
a sequence of pairs of fair dice, and the occurrence (relative to n=100) of the
face-pair (1,1).
Pair of Fair Dice, each with face values
(1st D3, 2nd
D3) |
1 |
2 |
3 |
1 |
(1,1) |
(2,1) |
(3,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/9) = 9.
Pair of Fair Dice, one with face values
(1st D4, 2nd
D3) |
1 |
2 |
3 |
4 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/12) =
12.
Pair of Fair Dice, each with face values
(1st D4, 2nd
D4) |
1 |
2 |
3 |
4 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/16) =
16.
Pair of Fair Dice, one with face values
(1st D5, 2nd
D4) |
1 |
2 |
3 |
4 |
5 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/20) =
20.
Pair of Fair Dice, each with face values
(1st D5, 2nd
D5) |
1 |
2 |
3 |
4 |
5 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/25) =
25.
Pair of Fair Dice, one with face values
(1st D6, 2nd
D5) |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/30) =
30.
Pair of Fair Dice, each with face values
(1st D6, 2nd
D6) |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
6 |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/36) =
36.
Pair of Fair Dice, one with face values
(1st D8, 2nd
D6) |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
6 |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/48) =
48.
Pair of Fair Dice, each with face values
(1st D8, 2nd
D8) |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
6 |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
7 |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(7,7) |
(8,7) |
8 |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/64) =
64.
Pair of Fair Dice, on e with face values
(1st D10, 2nd
D8) |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
6 |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
7 |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
8 |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/80) =
80.
Pair of Fair Dice, each with face values
(1st D10, 2nd D10) |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
6 |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
7 |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
8 |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
9 |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
10 |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
Pr
In random samples of 100 tosses of the
pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/100) =
100.
Pair of Fair Dice, one with face values
(1st D12, 2nd D8) |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
6 |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
7 |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
8 |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/96) =
96.
Pair of Fair Dice, one with face values
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
(11,9) |
(12,9) |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
(11,10) |
(12,10) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/120) =
120.
Pair of Fair Dice, each with face values
(1st D12, 2nd D12) |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
1 |
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
2 |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
3 |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
6 |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
7 |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
8 |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
9 |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
(11,9) |
(12,9) |
10 |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
(11,10) |
(12,10) |
11 |
(1,11) |
(2,11) |
(3,11) |
(4,11) |
(5,11) |
(6,11) |
(7,11) |
(8,11) |
(9,11) |
(10,11) |
(11,11) |
(12,11) |
12 |
(1,12) |
(2,12) |
(3,12) |
(4,12) |
(5,12) |
(6,12) |
(7,12) |
(8,12) |
(9,12) |
(10,12) |
(11,12) |
(12,12) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/144) =
144.
Pair of Fair Dice, one with face values
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
(13,1) |
(14,1) |
(15,1) |
(16,1) |
(17,1) |
(18,1) |
(19,1) |
(20,1) |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
(13,2) |
(14,2) |
(15,2) |
(16,2) |
(17,2) |
(18,2) |
(19,2) |
(20,2) |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
(13,3) |
(14,3) |
(15,3) |
(16,3) |
(17,3) |
(18,3) |
(19,3) |
(20,3) |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
(13,4) |
(14,4) |
(15,4) |
(16,4) |
(17,4) |
(18,4) |
(19,4) |
(20,4) |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
(13,5) |
(14,5) |
(15,5) |
(16,5) |
(17,5) |
(18,5) |
(19,5) |
(20,5) |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
(13,6) |
(14,6) |
(15,6) |
(16,6) |
(17,6) |
(18,6) |
(19,6) |
(20,6) |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
(13,7) |
(14,7) |
(15,7) |
(16,7) |
(17,7) |
(18,7) |
(19,7) |
(20,7) |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
(13,8) |
(14,8) |
(15,8) |
(16,8) |
(17,8) |
(18,8) |
(19,8) |
(20,8) |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
(11,9) |
(12,9) |
(13,9) |
(14,9) |
(15,9) |
(16,9) |
(17,9) |
(18,9) |
(19,9) |
(20,9) |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
(11,10) |
(12,10) |
(13,10) |
(14,10) |
(15,10) |
(16,10) |
(17,10) |
(18,10) |
(19,10) |
(20,10) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/200) =
200.
Pair of Fair Dice, one with face values
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
(11,9) |
(12,9) |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
(11,10) |
(12,10) |
(13,1) |
(14,1) |
(15,1) |
(16,1) |
(17,1) |
(18,1) |
(19,1) |
(20,1) |
(21,1) |
(22,1) |
(23,1) |
(24,1) |
(13,2) |
(14,2) |
(15,2) |
(16,2) |
(17,2) |
(18,2) |
(19,2) |
(20,2) |
(21,2) |
(22,2) |
(23,2) |
(24,2) |
(13,3) |
(14,3) |
(15,3) |
(16,3) |
(17,3) |
(18,3) |
(19,3) |
(20,3) |
(21,3) |
(22,3) |
(23,3) |
(24,3) |
(13,4) |
(14,4) |
(15,4) |
(16,4) |
(17,4) |
(18,4) |
(19,4) |
(20,4) |
(21,4) |
(22,4) |
(23,4) |
(24,4) |
(13,5) |
(14,5) |
(15,5) |
(16,5) |
(17,5) |
(18,5) |
(19,5) |
(20,5) |
(21,5) |
(22,5) |
(23,5) |
(24,5) |
(13,6) |
(14,6) |
(15,6) |
(16,6) |
(17,6) |
(18,6) |
(19,6) |
(20,6) |
(21,6) |
(22,6) |
(23,6) |
(24,6) |
(13,7) |
(14,7) |
(15,7) |
(16,7) |
(17,7) |
(18,7) |
(19,7) |
(20,7) |
(21,7) |
(22,7) |
(23,7) |
(24,7) |
(13,8) |
(14,8) |
(15,8) |
(16,8) |
(17,8) |
(18,8) |
(19,8) |
(20,8) |
(21,8) |
(22,8) |
(23,8) |
(24,8) |
(13,9) |
(14,9) |
(15,9) |
(16,9) |
(17,9) |
(18,9) |
(19,9) |
(20,9) |
(21,9) |
(22,9) |
(23,9) |
(24,9) |
(13,10) |
(14,10) |
(15,10) |
(16,10) |
(17,10) |
(18,10) |
(19,10) |
(20,10) |
(21,10) |
(22,10) |
(23,10) |
(24,10) |
Pr
In random samples of 100 tosses of
the pair of dice, we expect approximately 100*Pr
The smallest sample size for which
we expect to observe one or more tosses showing the pair (1,1) is 1/(1/240) =
240.
Pair of Fair Dice, one with face values
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
(13,1) |
(14,1) |
(15,1) |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
(13,2) |
(14,2) |
(15,2) |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
(13,3) |
(14,3) |
(15,3) |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
(13,4) |
(14,4) |
(15,4) |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
(13,5) |
(14,5) |
(15,5) |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
(13,6) |
(14,6) |
(15,6) |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
(13,7) |
(14,7) |
(15,7) |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
(13,8) |
(14,8) |
(15,8) |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
(11,9) |
(12,9) |
(13,9) |
(14,9) |
(15,9) |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
(11,10) |
(12,10) |
(13,10) |
(14,10) |
(15,10) |
(16,1) |
(17,1) |
(18,1) |
(19,1) |
(20,1) |
(21,1) |
(22,1) |
(23,1) |
(24,1) |
(25,1) |
(26,1) |
(27,1) |
(28,1) |
(29,1) |
(30,1) |
(16,2) |
(17,2) |
(18,2) |
(19,2) |
(20,2) |
(21,2) |
(22,2) |
(23,2) |
(24,2) |
(25,2) |
(26,2) |
(27,2) |
(28,2) |
(29,2) |
(30,2) |
(16,3) |
(17,3) |
(18,3) |
(19,3) |
(20,3) |
(21,3) |
(22,3) |
(23,3) |
(24,3) |
(25,3) |
(26,3) |
(27,3) |
(28,3) |
(29,3) |
(30,3) |
(16,4) |
(17,4) |
(18,4) |
(19,4) |
(20,4) |
(21,4) |
(22,4) |
(23,4) |
(24,4) |
(25,4) |
(26,4) |
(27,4) |
(28,4) |
(29,4) |
(30,4) |
(16,5) |
(17,5) |
(18,5) |
(19,5) |
(20,5) |
(21,5) |
(22,5) |
(23,5) |
(24,5) |
(25,5) |
(26,5) |
(27,5) |
(28,5) |
(29,5) |
(30,5) |
(16,6) |
(17,6) |
(18,6) |
(19,6) |
(20,6) |
(21,6) |
(22,6) |
(23,6) |
(24,6) |
(25,6) |
(26,6) |
(27,6) |
(28,6) |
(29,6) |
(30,6) |
(16,7) |
(17,7) |
(18,7) |
(19,7) |
(20,7) |
(21,7) |
(71,7) |
(23,7) |
(24,7) |
(25,7) |
(26,7) |
(27,7) |
(28,7) |
(29,7) |
(30,7) |
(16,8) |
(17,8) |
(18,8) |
(19,8) |
(20,8) |
(21,8) |
(22,8) |
(23,8) |
(24,8) |
(25,8) |
(26,8) |
(27,8) |
(28,8) |
(29,8) |
(30,8) |
(16,9) |
(17,9) |
(18,9) |
(19,9) |
(20,9) |
(21,9) |
(22,9) |
(23,9) |
(24,9) |
(25,9) |
(26,9) |
(27,9) |
(28,9) |
(29,9) |
(30,9) |
(16,10) |
(17,10) |
(18,10) |
(19,10) |
(20,10) |
(21,10) |
(22,10) |
(23,10) |
(24,10) |
(25,10) |
(26,10) |
(27,10) |
(28,10) |
(29,10) |
(30,10) |
Pr
In random samples of 100
tosses of the pair of dice, we expect approximately 100*Pr
The smallest sample size
for which we expect to observe one or more tosses showing the pair (1,1) is
1/(1/300) = 300.
Pair of Fair Dice, each with face values
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
(13,1) |
(14,1) |
(15,1) |
(16,1) |
(17,1) |
(18,1) |
(19,1) |
(20,1) |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
(13,2) |
(14,2) |
(15,2) |
(16,2) |
(17,2) |
(18,2) |
(19,2) |
(20,2) |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
(13,3) |
(14,3) |
(15,3) |
(16,3) |
(17,3) |
(18,3) |
(19,3) |
(20,3) |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
(13,4) |
(14,4) |
(15,4) |
(16,4) |
(17,4) |
(18,4) |
(19,4) |
(20,4) |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
(13,5) |
(14,5) |
(15,5) |
(16,5) |
(17,5) |
(18,5) |
(19,5) |
(20,5) |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
(13,6) |
(14,6) |
(15,6) |
(16,6) |
(17,6) |
(18,6) |
(19,6) |
(20,6) |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
(13,7) |
(14,7) |
(15,7) |
(16,7) |
(17,7) |
(18,7) |
(19,7) |
(20,7) |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
(13,8) |
(14,8) |
(15,8) |
(16,8) |
(17,8) |
(18,8) |
(19,8) |
(20,8) |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
(11,9) |
(12,9) |
(13,9) |
(14,9) |
(15,9) |
(16,9) |
(17,9) |
(18,9) |
(19,9) |
(20,9) |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
(11,10) |
(12,10) |
(13,10) |
(14,10) |
(15,10) |
(16,10) |
(17,10) |
(18,10) |
(19,10) |
(20,10) |
(1,11) |
(2,11) |
(3,11) |
(4,11) |
(5,11) |
(6,11) |
(7,11) |
(8,11) |
(9,11) |
(10,11) |
(11,11) |
(12,11) |
(13,11) |
(14,11) |
(15,11) |
(16,11) |
(17,11) |
(18,11) |
(19,11) |
(20,11) |
(1,12) |
(2,12) |
(3,12) |
(4,12) |
(5,12) |
(6,12) |
(7,12) |
(8,12) |
(9,12) |
(10,12) |
(11,12) |
(12,12) |
(13,12) |
(14,12) |
(15,12) |
(16,12) |
(17,12) |
(18,12) |
(19,12) |
(20,12) |
(1,13) |
(2,13) |
(3,13) |
(4,13) |
(5,13) |
(6,13) |
(7,13) |
(8,13) |
(9,13) |
(10,13) |
(11,13) |
(12,13) |
(13,13) |
(14,13) |
(15,13) |
(16,13) |
(17,13) |
(18,13) |
(19,13) |
(20,13) |
(1,14) |
(2,14) |
(3,14) |
(4,14) |
(5,14) |
(6,14) |
(7,14) |
(8,14) |
(9,14) |
(10,14) |
(11,14) |
(12,14) |
(13,14) |
(14,14) |
(15,14) |
(16,14) |
(17,14) |
(18,14) |
(19,14) |
(20,14) |
(1,15) |
(2,15) |
(3,15) |
(4,15) |
(5,15) |
(6,15) |
(7,15) |
(8,15) |
(9,15) |
(10,15) |
(11,15) |
(12,15) |
(13,15) |
(14,15) |
(15,15) |
(16,15) |
(17,15) |
(18,15) |
(19,15) |
(20,15) |
(1,16) |
(2,16) |
(3,16) |
(4,16) |
(5,16) |
(6,16) |
(7,16) |
(8,16) |
(9,16) |
(10,16) |
(11,16) |
(12,16) |
(13,16) |
(14,16) |
(15,16) |
(16,16) |
(17,16) |
(18,16) |
(19,16) |
(20,16) |
(1,17) |
(2,17) |
(3,17) |
(4,17) |
(5,17) |
(6,17) |
(71,17) |
(8,17) |
(9,17) |
(10,17) |
(11,17) |
(12,17) |
(13,17) |
(14,17) |
(15,17) |
(16,17) |
(17,17) |
(18,17) |
(19,17) |
(20,17) |
(1,18) |
(2,18) |
(3,18) |
(4,18) |
(5,18) |
(6,18) |
(7,18) |
(8,18) |
(9,18) |
(10,18) |
(11,18) |
(12,18) |
(13,18) |
(14,18) |
(15,18) |
(16,18) |
(17,18) |
(18,18) |
(19,18) |
(20,18) |
(1,19) |
(2,19) |
(3,19) |
(4,19) |
(5,19) |
(6,19) |
(7,19) |
(8,19) |
(9,19) |
(10,19) |
(11,19) |
(12,19) |
(13,19) |
(14,19) |
(15,19) |
(16,19) |
(17,19) |
(18,19) |
(19,19) |
(20,19) |
(1,20) |
(2,20) |
(3,20) |
(4,20) |
(5,20) |
(6,20) |
(7,20) |
(8,20) |
(9,20) |
(10,20) |
(11,20) |
(12,20) |
(13,20) |
(14,20) |
(15,20) |
(16,20) |
(17,20) |
(18,20) |
(19,20) |
(20,20) |
Pr
In random samples of 100
tosses of the pair of dice, we expect approximately 100*Pr
The smallest sample size
for which we expect to observe one or more tosses showing the pair (1,1) is
1/(1/400) = 400.
Pair of Fair Dice, one with face values
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
(13,1) |
(14,1) |
(15,1) |
(16,1) |
(17,1) |
(18,1) |
(19,1) |
(21,1) |
(22,1) |
(23,1) |
(24,1) |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
(13,2) |
(14,2) |
(15,2) |
(16,2) |
(17,2) |
(18,2) |
(19,2) |
(21,2) |
(22,2) |
(23,2) |
(24,2) |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
(13,3) |
(14,3) |
(15,3) |
(16,3) |
(17,3) |
(18,3) |
(19,3) |
(21,3) |
(22,3) |
(23,3) |
(24,3) |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
(13,4) |
(14,4) |
(15,4) |
(16,4) |
(17,4) |
(18,4) |
(19,4) |
(21,4) |
(22,4) |
(23,4) |
(24,4) |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
(13,5) |
(14,5) |
(15,5) |
(16,5) |
(17,5) |
(18,5) |
(19,5) |
(21,5) |
(22,5) |
(23,5) |
(24,5) |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
(13,6) |
(14,6) |
(15,6) |
(16,6) |
(17,6) |
(18,6) |
(19,6) |
(21,6) |
(22,6) |
(23,6) |
(24,6) |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
(13,7) |
(14,7) |
(15,7) |
(16,7) |
(17,7) |
(18,7) |
(19,7) |
(21,7) |
(22,7) |
(23,7) |
(24,7) |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
(13,8) |
(14,8) |
(15,8) |
(16,8) |
(17,8) |
(18,8) |
(19,8) |
(21,8) |
(22,8) |
(23,8) |
(24,8) |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
(11,9) |
(12,9) |
(13,9) |
(14,9) |
(15,9) |
(16,9) |
(17,9) |
(18,9) |
(19,9) |
(21,9) |
(22,9) |
(23,9) |
(24,9) |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
(11,10) |
(12,10) |
(13,10) |
(14,10) |
(15,10) |
(16,10) |
(17,10) |
(18,10) |
(19,10) |
(21,10) |
(22,10) |
(23,10) |
(24,10) |
(1,11) |
(2,11) |
(3,11) |
(4,11) |
(5,11) |
(6,11) |
(7,11) |
(8,11) |
(9,11) |
(10,11) |
(11,11) |
(12,11) |
(13,11) |
(14,11) |
(15,11) |
(16,11) |
(17,11) |
(18,11) |
(19,11) |
(21,11) |
(22,11) |
(23,11) |
(24,11) |
(1,12) |
(2,12) |
(3,12) |
(4,12) |
(5,12) |
(6,12) |
(7,12) |
(8,12) |
(9,12) |
(10,12) |
(11,12) |
(12,12) |
(13,12) |
(14,12) |
(15,12) |
(16,12) |
(17,12) |
(18,12) |
(19,12) |
(21,12) |
(22,12) |
(23,12) |
(24,12) |
(1,13) |
(2,13) |
(3,13) |
(4,13) |
(5,13) |
(6,13) |
(7,13) |
(8,13) |
(9,13) |
(10,13) |
(11,13) |
(12,13) |
(13,13) |
(14,13) |
(15,13) |
(16,13) |
(17,13) |
(18,13) |
(19,13) |
(21,13) |
(22,13) |
(23,13) |
(24,13) |
(1,14) |
(2,14) |
(3,14) |
(4,14) |
(5,14) |
(6,14) |
(7,14) |
(8,14) |
(9,14) |
(10,14) |
(11,14) |
(12,14) |
(13,14) |
(14,14) |
(15,14) |
(16,14) |
(17,14) |
(18,14) |
(19,14) |
(21,14) |
(22,14) |
(23,14) |
(24,14) |
(1,15) |
(2,15) |
(3,15) |
(4,15) |
(5,15) |
(6,15) |
(7,15) |
(8,15) |
(9,15) |
(10,15) |
(11,15) |
(12,15) |
(13,15) |
(14,15) |
(15,15) |
(16,15) |
(17,15) |
(18,15) |
(19,15) |
(21,15) |
(22,15) |
(23,15) |
(24,15) |
(1,16) |
(2,16) |
(3,16) |
(4,16) |
(5,16) |
(6,16) |
(7,16) |
(8,16) |
(9,16) |
(10,16) |
(11,16) |
(12,16) |
(13,16) |
(14,16) |
(15,16) |
(16,16) |
(17,16) |
(18,16) |
(19,16) |
(21,16) |
(22,16) |
(23,16) |
(24,16) |
(1,17) |
(2,17) |
(3,17) |
(4,17) |
(5,17) |
(6,17) |
(71,17) |
(8,17) |
(9,17) |
(10,17) |
(11,17) |
(12,17) |
(13,17) |
(14,17) |
(15,17) |
(16,17) |
(17,17) |
(18,17) |
(19,17) |
(21,17) |
(22,17) |
(23,17) |
(24,17) |
(1,18) |
(2,18) |
(3,18) |
(4,18) |
(5,18) |
(6,18) |
(7,18) |
(8,18) |
(9,18) |
(10,18) |
(11,18) |
(12,18) |
(13,18) |
(14,18) |
(15,18) |
(16,18) |
(17,18) |
(18,18) |
(19,18) |
(21,18) |
(22,18) |
(23,18) |
(24,18) |
(1,19) |
(2,19) |
(3,19) |
(4,19) |
(5,19) |
(6,19) |
(7,19) |
(8,19) |
(9,19) |
(10,19) |
(11,19) |
(12,19) |
(13,19) |
(14,19) |
(15,19) |
(16,19) |
(17,19) |
(18,19) |
(19,19) |
(21,19) |
(22,19) |
(23,19) |
(24,19) |
(1,20) |
(2,20) |
(3,20) |
(4,20) |
(5,20) |
(6,20) |
(7,20) |
(8,20) |
(9,20) |
(10,20) |
(11,20) |
(12,20) |
(13,20) |
(14,20) |
(15,20) |
(16,20) |
(17,20) |
(18,20) |
(19,20) |
(21,20) |
(22,20) |
(23,20) |
(24,20) |
(21,1) |
(22,1) |
(23,1) |
(24,1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,2) |
(22,2) |
(23,2) |
(24,2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,3) |
(22,3) |
(23,3) |
(24,3) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,4) |
(22,4) |
(23,4) |
(24,4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,5) |
(22,5) |
(23,5) |
(24,5) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,6) |
(22,6) |
(23,6) |
(24,6) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,7) |
(22,7) |
(23,7) |
(24,7) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,8) |
(22,8) |
(23,8) |
(24,8) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,9) |
(22,9) |
(23,9) |
(24,9) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,10) |
(22,10) |
(23,10) |
(24,10) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,11) |
(22,11) |
(23,11) |
(24,11) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,12) |
(22,12) |
(23,12) |
(24,12) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,13) |
(22,13) |
(23,13) |
(24,13) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,14) |
(22,14) |
(23,14) |
(24,14) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,15) |
(22,15) |
(23,15) |
(24,15) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,16) |
(22,16) |
(23,16) |
(24,16) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,17) |
(22,17) |
(23,17) |
(24,17) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,18) |
(22,18) |
(23,18) |
(24,18) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,19) |
(22,19) |
(23,19) |
(24,19) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(21,20) |
(22,20) |
(23,20) |
(24,20) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pr
In random samples of 100
tosses of the pair of dice, we expect approximately 100*Pr
The smallest sample size
for which we expect to observe one or more tosses showing the pair (1,1) is
1/(1/480) = 480.
Pair of Fair Dice, each with face values
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
(13,1) |
(14,1) |
(15,1) |
(16,1) |
(17,1) |
(18,1) |
(19,1) |
(21,1) |
(22,1) |
(23,1) |
(24,1) |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
(13,2) |
(14,2) |
(15,2) |
(16,2) |
(17,2) |
(18,2) |
(19,2) |
(21,2) |
(22,2) |
(23,2) |
(24,2) |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
(13,3) |
(14,3) |
(15,3) |
(16,3) |
(17,3) |
(18,3) |
(19,3) |
(21,3) |
(22,3) |
(23,3) |
(24,3) |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
(13,4) |
(14,4) |
(15,4) |
(16,4) |
(17,4) |
(18,4) |
(19,4) |
(21,4) |
(22,4) |
(23,4) |
(24,4) |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
(13,5) |
(14,5) |
(15,5) |
(16,5) |
(17,5) |
(18,5) |
(19,5) |
(21,5) |
(22,5) |
(23,5) |
(24,5) |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
(13,6) |
(14,6) |
(15,6) |
(16,6) |
(17,6) |
(18,6) |
(19,6) |
(21,6) |
(22,6) |
(23,6) |
(24,6) |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
(13,7) |
(14,7) |
(15,7) |
(16,7) |
(17,7) |
(18,7) |
(19,7) |
(21,7) |
(22,7) |
(23,7) |
(24,7) |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
(13,8) |
(14,8) |
(15,8) |
(16,8) |
(17,8) |
(18,8) |
(19,8) |
(21,8) |
(22,8) |
(23,8) |
(24,8) |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
(11,9) |
(12,9) |
(13,9) |
(14,9) |
(15,9) |
(16,9) |
(17,9) |
(18,9) |
(19,9) |
(21,9) |
(22,9) |
(23,9) |
(24,9) |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
(11,10) |
(12,10) |
(13,10) |
(14,10) |
(15,10) |
(16,10) |
(17,10) |
(18,10) |
(19,10) |
(21,10) |
(22,10) |
(23,10) |
(24,10) |
(1,11) |
(2,11) |
(3,11) |
(4,11) |
(5,11) |
(6,11) |
(7,11) |
(8,11) |
(9,11) |
(10,11) |
(11,11) |
(12,11) |
(13,11) |
(14,11) |
(15,11) |
(16,11) |
(17,11) |
(18,11) |
(19,11) |
(21,11) |
(22,11) |
(23,11) |
(24,11) |
(1,12) |
(2,12) |
(3,12) |
(4,12) |
(5,12) |
(6,12) |
(7,12) |
(8,12) |
(9,12) |
(10,12) |
(11,12) |
(12,12) |
(13,12) |
(14,12) |
(15,12) |
(16,12) |
(17,12) |
(18,12) |
(19,12) |
(21,12) |
(22,12) |
(23,12) |
(24,12) |
(1,13) |
(2,13) |
(3,13) |
(4,13) |
(5,13) |
(6,13) |
(7,13) |
(8,13) |
(9,13) |
(10,13) |
(11,13) |
(12,13) |
(13,13) |
(14,13) |
(15,13) |
(16,13) |
(17,13) |
(18,13) |
(19,13) |
(21,13) |
(22,13) |
(23,13) |
(24,13) |
(1,14) |
(2,14) |
(3,14) |
(4,14) |
(5,14) |
(6,14) |
(7,14) |
(8,14) |
(9,14) |
(10,14) |
(11,14) |
(12,14) |
(13,14) |
(14,14) |
(15,14) |
(16,14) |
(17,14) |
(18,14) |
(19,14) |
(21,14) |
(22,14) |
(23,14) |
(24,14) |
(1,15) |
(2,15) |
(3,15) |
(4,15) |
(5,15) |
(6,15) |
(7,15) |
(8,15) |
(9,15) |
(10,15) |
(11,15) |
(12,15) |
(13,15) |
(14,15) |
(15,15) |
(16,15) |
(17,15) |
(18,15) |
(19,15) |
(21,15) |
(22,15) |
(23,15) |
(24,15) |
(1,16) |
(2,16) |
(3,16) |
(4,16) |
(5,16) |
(6,16) |
(7,16) |
(8,16) |
(9,16) |
(10,16) |
(11,16) |
(12,16) |
(13,16) |
(14,16) |
(15,16) |
(16,16) |
(17,16) |
(18,16) |
(19,16) |
(21,16) |
(22,16) |
(23,16) |
(24,16) |
(1,17) |
(2,17) |
(3,17) |
(4,17) |
(5,17) |
(6,17) |
(71,17) |
(8,17) |
(9,17) |
(10,17) |
(11,17) |
(12,17) |
(13,17) |
(14,17) |
(15,17) |
(16,17) |
(17,17) |
(18,17) |
(19,17) |
(21,17) |
(22,17) |
(23,17) |
(24,17) |
(1,18) |
(2,18) |
(3,18) |
(4,18) |
(5,18) |
(6,18) |
(7,18) |
(8,18) |
(9,18) |
(10,18) |
(11,18) |
(12,18) |
(13,18) |
(14,18) |
(15,18) |
(16,18) |
(17,18) |
(18,18) |
(19,18) |
(21,18) |
(22,18) |
(23,18) |
(24,18) |
(1,19) |
(2,19) |
(3,19) |
(4,19) |
(5,19) |
(6,19) |
(7,19) |
(8,19) |
(9,19) |
(10,19) |
(11,19) |
(12,19) |
(13,19) |
(14,19) |
(15,19) |
(16,19) |
(17,19) |
(18,19) |
(19,19) |
(21,19) |
(22,19) |
(23,19) |
(24,19) |
(1,20) |
(2,20) |
(3,20) |
(4,20) |
(5,20) |
(6,20) |
(7,20) |
(8,20) |
(9,20) |
(10,20) |
(11,20) |
(12,20) |
(13,20) |
(14,20) |
(15,20) |
(16,20) |
(17,20) |
(18,20) |
(19,20) |
(21,20) |
(22,20) |
(23,20) |
(24,20) |
(1,21) |
(2,21) |
(3,21) |
(4,21) |
(5,21) |
(6,21) |
(7,21) |
(8,21) |
(9,21) |
(10,21) |
(11,21) |
(12,21) |
(13,21) |
(14,21) |
(15,21) |
(16,21) |
(17,21) |
(18,21) |
(19,21) |
(21,21) |
(22,21) |
(23,21) |
(24,21) |
(1,22) |
(2,22) |
(3,22) |
(4,22) |
(5,22) |
(6,22) |
(7,22) |
(8,22) |
(9,22) |
(10,22) |
(11,22) |
(12,22) |
(13,22) |
(14,22) |
(15,22) |
(16,22) |
(17,22) |
(18,22) |
(19,22) |
(21,22) |
(22,22) |
(23,22) |
(24,22) |
(1,23) |
(2,23) |
(3,23) |
(4,23) |
(5,23) |
(6,23) |
(7,23) |
(8,23) |
(9,23) |
(10,23) |
(11,23) |
(12,23) |
(13,23) |
(14,23) |
(15,23) |
(16,23) |
(17,23) |
(18,23) |
(19,23) |
(21,23) |
(22,23) |
(23,23) |
(24,23) |
(1,24) |
(2,24) |
(3,24) |
(4,24) |
(5,24) |
(6,24) |
(7,24) |
(8,24) |
(9,24) |
(10,24) |
(11,24) |
(12,24) |
(13,24) |
(14,24) |
(15,24) |
(16,24) |
(17,24) |
(18,24) |
(19,24) |
(21,24) |
(22,24) |
(23,24) |
(24,24) |
Pr
In random samples of 100
tosses of the pair of dice, we expect approximately 100*Pr
The smallest sample size
for which we expect to observe one or more tosses showing the pair (1,1) is 1/(1/576)
= 576.
Pair of Fair Dice, one with face values
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
(13,1) |
(14,1) |
(15,1) |
(16,1) |
(17,1) |
(18,1) |
(19,1) |
(20,1) |
|
||
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
(13,2) |
(14,2) |
(15,2) |
(16,2) |
(17,2) |
(18,2) |
(19,2) |
(20,2) |
|
||
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
(13,3) |
(14,3) |
(15,3) |
(16,3) |
(17,3) |
(18,3) |
(19,3) |
(20,3) |
|
||
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
(13,4) |
(14,4) |
(15,4) |
(16,4) |
(17,4) |
(18,4) |
(19,4) |
(20,4) |
|
||
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
(13,5) |
(14,5) |
(15,5) |
(16,5) |
(17,5) |
(18,5) |
(19,5) |
(20,5) |
|
||
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
(13,6) |
(14,6) |
(15,6) |
(16,6) |
(17,6) |
(18,6) |
(19,6) |
(20,6) |
|
||
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
(13,7) |
(14,7) |
(15,7) |
(16,7) |
(17,7) |
(18,7) |
(19,7) |
(20,7) |
|
||
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
(13,8) |
(14,8) |
(15,8) |
(16,8) |
(17,8) |
(18,8) |
(19,8) |
(20,8) |
|
||
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
(11,9) |
(12,9) |
(13,9) |
(14,9) |
(15,9) |
(16,9) |
(17,9) |
(18,9) |
(19,9) |
(20,9) |
|
||
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
(11,10) |
(12,10) |
(13,10) |
(14,10) |
(15,10) |
(16,10) |
(17,10) |
(18,10) |
(19,10) |
(20,10) |
|
||
(1,11) |
(2,11) |
(3,11) |
(4,11) |
(5,11) |
(6,11) |
(7,11) |
(8,11) |
(9,11) |
(10,11) |
(11,11) |
(12,11) |
(13,11) |
(14,11) |
(15,11) |
(16,11) |
(17,11) |
(18,11) |
(19,11) |
(20,11) |
|
||
(1,12) |
(2,12) |
(3,12) |
(4,12) |
(5,12) |
(6,12) |
(7,12) |
(8,12) |
(9,12) |
(10,12) |
(11,12) |
(12,12) |
(13,12) |
(14,12) |
(15,12) |
(16,12) |
(17,12) |
(18,12) |
(19,12) |
(20,12) |
|
||
(1,13) |
(2,13) |
(3,13) |
(4,13) |
(5,13) |
(6,13) |
(7,13) |
(8,13) |
(9,13) |
(10,13) |
(11,13) |
(12,13) |
(13,13) |
(14,13) |
(15,13) |
(16,13) |
(17,13) |
(18,13) |
(19,13) |
(20,13) |
|
||
(1,14) |
(2,14) |
(3,14) |
(4,14) |
(5,14) |
(6,14) |
(7,14) |
(8,14) |
(9,14) |
(10,14) |
(11,14) |
(12,14) |
(13,14) |
(14,14) |
(15,14) |
(16,14) |
(17,14) |
(18,14) |
(19,14) |
(20,14) |
|
||
(1,15) |
(2,15) |
(3,15) |
(4,15) |
(5,15) |
(6,15) |
(7,15) |
(8,15) |
(9,15) |
(10,15) |
(11,15) |
(12,15) |
(13,15) |
(14,15) |
(15,15) |
(16,15) |
(17,15) |
(18,15) |
(19,15) |
(20,15) |
|
||
(1,16) |
(2,16) |
(3,16) |
(4,16) |
(5,16) |
(6,16) |
(7,16) |
(8,16) |
(9,16) |
(10,16) |
(11,16) |
(12,16) |
(13,16) |
(14,16) |
(15,16) |
(16,16) |
(17,16) |
(18,16) |
(19,16) |
(20,16) |
|
||
(1,17) |
(2,17) |
(3,17) |
(4,17) |
(5,17) |
(6,17) |
(71,17) |
(8,17) |
(9,17) |
(10,17) |
(11,17) |
(12,17) |
(13,17) |
(14,17) |
(15,17) |
(16,17) |
(17,17) |
(18,17) |
(19,17) |
(20,17) |
|
||
(1,18) |
(2,18) |
(3,18) |
(4,18) |
(5,18) |
(6,18) |
(7,18) |
(8,18) |
(9,18) |
(10,18) |
(11,18) |
(12,18) |
(13,18) |
(14,18) |
(15,18) |
(16,18) |
(17,18) |
(18,18) |
(19,18) |
(20,18) |
|
||
(1,19) |
(2,19) |
(3,19) |
(4,19) |
(5,19) |
(6,19) |
(7,19) |
(8,19) |
(9,19) |
(10,19) |
(11,19) |
(12,19) |
(13,19) |
(14,19) |
(15,19) |
(16,19) |
(17,19) |
(18,19) |
(19,19) |
(20,19) |
|
||
(1,20) |
(2,20) |
(3,20) |
(4,20) |
(5,20) |
(6,20) |
(7,20) |
(8,20) |
(9,20) |
(10,20) |
(11,20) |
(12,20) |
(13,20) |
(14,20) |
(15,20) |
(16,20) |
(17,20) |
(18,20) |
(19,20) |
(20,20) |
|
||
(1,21) |
(2,21) |
(3,21) |
(4,21) |
(5,21) |
(6,21) |
(7,21) |
(8,21) |
(9,21) |
(10,21) |
(11,21) |
(12,21) |
(13,21) |
(14,21) |
(15,21) |
(16,21) |
(17,21) |
(18,21) |
(19,21) |
(20,21) |
|
||
(1,22) |
(2,22) |
(3,22) |
(4,22) |
(5,22) |
(6,22) |
(7,22) |
(8,22) |
(9,22) |
(10,22) |
(11,22) |
(12,22) |
(13,22) |
(14,22) |
(15,22) |
(16,22) |
(17,22) |
(18,22) |
(19,22) |
(20,22) |
|
||
(1,23) |
(2,23) |
(3,23) |
(4,23) |
(5,23) |
(6,23) |
(7,23) |
(8,23) |
(9,23) |
(10,23) |
(11,23) |
(12,23) |
(13,23) |
(14,23) |
(15,23) |
(16,23) |
(17,23) |
(18,23) |
(19,23) |
(20,23) |
|
||
(1,24) |
(2,24) |
(3,24) |
(4,24) |
(5,24) |
(6,24) |
(7,24) |
(8,24) |
(9,24) |
(10,24) |
(11,24) |
(12,24) |
(13,24) |
(14,24) |
(15,24) |
(16,24) |
(17,24) |
(18,24) |
(19,24) |
(20,24) |
|
||
(21,1) |
(22,1) |
(23,1) |
(24,1) |
(25,1) |
(26,1) |
(27,1) |
(28,1) |
(29,1) |
(30,1) |
|
||||||||||||
(21,2) |
(22,2) |
(23,2) |
(24,2) |
(25,2) |
(26,2) |
(27,2) |
(28,2) |
(29,2) |
(30,2) |
|
||||||||||||
(21,3) |
(22,3) |
(23,3) |
(24,3) |
(25,3) |
(26,3) |
(27,3) |
(28,3) |
(29,3) |
(30,3) |
|
||||||||||||
(21,4) |
(22,4) |
(23,4) |
(24,4) |
(25,4) |
(26,4) |
(27,4) |
(28,4) |
(29,4) |
(30,4) |
|
||||||||||||
(21,5) |
(22,5) |
(23,5) |
(24,5) |
(25,5) |
(26,5) |
(27,5) |
(28,5) |
(29,5) |
(30,5) |
|
||||||||||||
(21,6) |
(22,6) |
(23,6) |
(24,6) |
(25,6) |
(26,6) |
(27,6) |
(28,6) |
(29,6) |
(30,6) |
|
||||||||||||
(21,7) |
(22,7) |
(23,7) |
(24,7) |
(25,7) |
(26,7) |
(27,7) |
(28,7) |
(29,7) |
(30,7) |
|
||||||||||||
(21,8) |
(22,8) |
(23,8) |
(24,8) |
(25,8) |
(26,8) |
(27,8) |
(28,8) |
(29,8) |
(30,8) |
|
||||||||||||
(21,9) |
(22,9) |
(23,9) |
(24,9) |
(25,9) |
(26,9) |
(27,9) |
(28,9) |
(29,9) |
(30,9) |
|
||||||||||||
(21,10) |
(22,10) |
(23,10) |
(24,10) |
(25,10) |
(26,10) |
(27,10) |
(28,10) |
(29,10) |
(30,10) |
|
||||||||||||
(21,11) |
(22,11) |
(23,11) |
(24,11) |
(25,11) |
(26,11) |
(27,11) |
(28,11) |
(29,11) |
(30,11) |
|
||||||||||||
(21,12) |
(22,12) |
(23,12) |
(24,12) |
(25,12) |
(26,12) |
(27,12) |
(28,12) |
(29,12) |
(30,12) |
|
||||||||||||
(21,13) |
(22,13) |
(23,13) |
(24,13) |
(25,13) |
(26,13) |
(27,13) |
(28,13) |
(29,13) |
(30,13) |
|
||||||||||||
(21,14) |
(22,14) |
(23,14) |
(24,14) |
(25,14) |
(26,14) |
(27,14) |
(28,14) |
(29,14) |
(30,14) |
|
||||||||||||
(21,15) |
(22,15) |
(23,15) |
(24,15) |
(25,15) |
(26,15) |
(27,15) |
(28,15) |
(29,15) |
(30,15) |
|
||||||||||||
(21,16) |
(22,16) |
(23,16) |
(24,16) |
(25,16) |
(26,16) |
(27,16) |
(28,16) |
(29,16) |
(30,16) |
|
||||||||||||
(21,17) |
(22,17) |
(23,17) |
(24,17) |
(25,17) |
(26,17) |
(27,17) |
(28,17) |
(29,17) |
(30,17) |
|
||||||||||||
(21,18) |
(22,18) |
(23,18) |
(24,18) |
(25,18) |
(26,18) |
(27,18) |
(28,18) |
(29,18) |
(30,18) |
|
||||||||||||
(21,19) |
(22,19) |
(23,19) |
(24,19) |
(25,19) |
(26,19) |
(27,19) |
(28,19) |
(29,19) |
(30,19) |
|
||||||||||||
(21,20) |
(22,20) |
(23,20) |
(24,20) |
(25,20) |
(26,20) |
(27,20) |
(28,20) |
(29,20) |
(30,20) |
|
||||||||||||
(21,21) |
(22,21) |
(23,21) |
(24,21) |
(25,21) |
(26,21) |
(27,21) |
(28,21) |
(29,21) |
(30,21) |
|
||||||||||||
(21,22) |
(22,22) |
(23,22) |
(24,22) |
(25,22) |
(26,22) |
(27,22) |
(28,22) |
(29,22) |
(30,22) |
|
||||||||||||
(21,23) |
(22,23) |
(23,23) |
(24,23) |
(25,23) |
(26,23) |
(27,23) |
(28,23) |
(29,23) |
(30,23) |
|
||||||||||||
(21,24) |
(22,24) |
(23,24) |
(24,24) |
(25,24) |
(26,24) |
(27,24) |
(28,24) |
(29,24) |
(30,24) |
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pr
In random samples of 100
tosses of the pair of dice, we expect approximately 100*Pr
Pair of Fair Dice, each with face values
(1,1) |
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
(11,1) |
(12,1) |
(13,1) |
(14,1) |
(15,1) |
(16,1) |
(17,1) |
(18,1) |
(19,1) |
(20,1) |
(1,2) |
(2,2) |
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
(11,2) |
(12,2) |
(13,2) |
(14,2) |
(15,2) |
(16,2) |
(17,2) |
(18,2) |
(19,2) |
(20,2) |
(1,3) |
(2,3) |
(3,3) |
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
(11,3) |
(12,3) |
(13,3) |
(14,3) |
(15,3) |
(16,3) |
(17,3) |
(18,3) |
(19,3) |
(20,3) |
(1,4) |
(2,4) |
(3,4) |
(4,4) |
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
(11,4) |
(12,4) |
(13,4) |
(14,4) |
(15,4) |
(16,4) |
(17,4) |
(18,4) |
(19,4) |
(20,4) |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
(5,5) |
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
(11,5) |
(12,5) |
(13,5) |
(14,5) |
(15,5) |
(16,5) |
(17,5) |
(18,5) |
(19,5) |
(20,5) |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
(6,6) |
(7,6) |
(8,6) |
(9,6) |
(10,6) |
(11,6) |
(12,6) |
(13,6) |
(14,6) |
(15,6) |
(16,6) |
(17,6) |
(18,6) |
(19,6) |
(20,6) |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
(71,7) |
(8,7) |
(9,7) |
(10,7) |
(11,7) |
(12,7) |
(13,7) |
(14,7) |
(15,7) |
(16,7) |
(17,7) |
(18,7) |
(19,7) |
(20,7) |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
(8,8) |
(9,8) |
(10,8) |
(11,8) |
(12,8) |
(13,8) |
(14,8) |
(15,8) |
(16,8) |
(17,8) |
(18,8) |
(19,8) |
(20,8) |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
(9,9) |
(10,9) |
(11,9) |
(12,9) |
(13,9) |
(14,9) |
(15,9) |
(16,9) |
(17,9) |
(18,9) |
(19,9) |
(20,9) |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
(10,10) |
(11,10) |
(12,10) |
(13,10) |
(14,10) |
(15,10) |
(16,10) |
(17,10) |
(18,10) |
(19,10) |
(20,10) |
(1,11) |
(2,11) |
(3,11) |
(4,11) |
(5,11) |
(6,11) |
(7,11) |
(8,11) |
(9,11) |
(10,11) |
(11,11) |
(12,11) |
(13,11) |
(14,11) |
(15,11) |
(16,11) |
(17,11) |
(18,11) |
(19,11) |
(20,11) |
(1,12) |
(2,12) |
(3,12) |
(4,12) |
(5,12) |
(6,12) |
(7,12) |
(8,12) |
(9,12) |
(10,12) |
(11,12) |
(12,12) |
(13,12) |
(14,12) |
(15,12) |
(16,12) |
(17,12) |
(18,12) |
(19,12) |
(20,12) |
(1,13) |
(2,13) |
(3,13) |
(4,13) |
(5,13) |
(6,13) |
(7,13) |
(8,13) |
(9,13) |
(10,13) |
(11,13) |
(12,13) |
(13,13) |
(14,13) |
(15,13) |
(16,13) |
(17,13) |
(18,13) |
(19,13) |
(20,13) |
(1,14) |
(2,14) |
(3,14) |
(4,14) |
(5,14) |
(6,14) |
(7,14) |
(8,14) |
(9,14) |
(10,14) |
(11,14) |
(12,14) |
(13,14) |
(14,14) |
(15,14) |
(16,14) |
(17,14) |
(18,14) |
(19,14) |
(20,14) |
(1,15) |
(2,15) |
(3,15) |
(4,15) |
(5,15) |
(6,15) |
(7,15) |
(8,15) |
(9,15) |
(10,15) |
(11,15) |
(12,15) |
(13,15) |
(14,15) |
(15,15) |
(16,15) |
(17,15) |
(18,15) |
(19,15) |
(20,15) |
(1,16) |
(2,16) |
(3,16) |
(4,16) |
(5,16) |
(6,16) |
(7,16) |
(8,16) |
(9,16) |
(10,16) |
(11,16) |
(12,16) |
(13,16) |
(14,16) |
(15,16) |
(16,16) |
(17,16) |
(18,16) |
(19,16) |
(20,16) |
(1,17) |
(2,17) |
(3,17) |
(4,17) |
(5,17) |
(6,17) |
(71,17) |
(8,17) |
(9,17) |
(10,17) |
(11,17) |
(12,17) |
(13,17) |
(14,17) |
(15,17) |
(16,17) |
(17,17) |
(18,17) |
(19,17) |
(20,17) |
(1,18) |
(2,18) |
(3,18) |
(4,18) |
(5,18) |
(6,18) |
(7,18) |
(8,18) |
(9,18) |
(10,18) |
(11,18) |
(12,18) |
(13,18) |
(14,18) |
(15,18) |
(16,18) |
(17,18) |
(18,18) |
(19,18) |
(20,18) |
(1,19) |
(2,19) |
(3,19) |
(4,19) |
(5,19) |
(6,19) |
(7,19) |
(8,19) |
(9,19) |
(10,19) |
(11,19) |
(12,19) |
(13,19) |
(14,19) |
(15,19) |
(16,19) |
(17,19) |
(18,19) |
(19,19) |
(20,19) |
(1,20) |
(2,20) |
(3,20) |
(4,20) |
(5,20) |
(6,20) |
(7,20) |
(8,20) |
(9,20) |
(10,20) |
(11,20) |
(12,20) |
(13,20) |
(14,20) |
(15,20) |
(16,20) |
(17,20) |
(18,20) |
(19,20) |
(20,20) |
(1,21) |
(2,21) |
(3,21) |
(4,21) |
(5,21) |
(6,21) |
(7,21) |
(8,21) |
(9,21) |
(10,21) |
(11,21) |
(12,21) |
(13,21) |
(14,21) |
(15,21) |
(16,21) |
(17,21) |
(18,21) |
(19,21) |
(20,21) |
(1,22) |
(2,22) |
(3,22) |
(4,22) |
(5,22) |
(6,22) |
(7,22) |
(8,22) |
(9,22) |
(10,22) |
(11,22) |
(12,22) |
(13,22) |
(14,22) |
(15,22) |
(16,22) |
(17,22) |
(18,22) |
(19,22) |
(20,22) |
(1,23) |
(2,23) |
(3,23) |
(4,23) |
(5,23) |
(6,23) |
(7,23) |
(8,23) |
(9,23) |
(10,23) |
(11,23) |
(12,23) |
(13,23) |
(14,23) |
(15,23) |
(16,23) |
(17,23) |
(18,23) |
(19,23) |
(20,23) |
(1,24) |
(2,24) |
(3,24) |
(4,24) |
(5,24) |
(6,24) |
(7,24) |
(8,24) |
(9,24) |
(10,24) |
(11,24) |
(12,24) |
(13,24) |
(14,24) |
(15,24) |
(16,24) |
(17,24) |
(18,24) |
(19,24) |
(20,24) |
(1,25) |
(2,25) |
(3,25) |
(4,25) |
(5,25) |
(6,25) |
(7,25) |
(8,25) |
(9,25) |
(10,25) |
(11,25) |
(12,25) |
(13,25) |
(14,25) |
(15,25) |
(16,25) |
(17,25) |
(18,25) |
(19,25) |
(20,25) |
(1,26) |
(2,26) |
(3,26) |
(4,26) |
(5,26) |
(6,26) |
(7,26) |
(8,26) |
(9,26) |
(10,26) |
(11,26) |
(12,26) |
(13,26) |
(14,26) |
(15,26) |
(16,26) |
(17,26) |
(18,26) |
(19,26) |
(20,26) |
(1,27) |
(2,27) |
(3,27) |
(4,27) |
(5,27) |
(6,27) |
(7,27) |
(8,27) |
(9,27) |
(10,27) |
(11,27) |
(12,27) |
(13,27) |
(14,27) |
(15,27) |
(16,27) |
(17,27) |
(18,27) |
(19,27) |
(20,27) |
(1,28) |
(2,28) |
(3,28) |
(4,28) |
(5,28) |
(6,28) |
(7,28) |
(8,28) |
(9,28) |
(10,28) |
(11,28) |
(12,28) |
(13,28) |
(14,28) |
(15,28) |
(16,28) |
(17,28) |
(18,28) |
(19,28) |
(20,28) |
(1,29) |
(2,29) |
(3,29) |
(4,29) |
(5,29) |
(6,29) |
(7,29) |
(8,29) |
(9,29) |
(10,29) |
(11,29) |
(12,29) |
(13,29) |
(14,29) |
(15,29) |
(16,29) |
(17,29) |
(18,29) |
(19,29) |
(20,29) |
(1,30) |
(2,30) |
(3,30) |
(4,30) |
(5,30) |
(6,30) |
(7,30) |
(8,30) |
(9,30) |
(10,30) |
(11,30) |
(12,30) |
(13,30) |
(14,30) |
(15,30) |
(16,30) |
(17,30) |
(18,30) |
(19,30) |
(20,30) |
(21,1) |
(22,1) |
(23,1) |
(24,1) |
(25,1) |
(26,1) |
(27,1) |
(28,1) |
(29,1) |
(30,1) |
|
|||||||||
(21,2) |
(22,2) |
(23,2) |
(24,2) |
(25,2) |
(26,2) |
(27,2) |
(28,2) |
(29,2) |
(30,2) |
|
|||||||||
(21,3) |
(22,3) |
(23,3) |
(24,3) |
(25,3) |
(26,3) |
(27,3) |
(28,3) |
(29,3) |
(30,3) |
|
|||||||||
(21,4) |
(22,4) |
(23,4) |
(24,4) |
(25,4) |
(26,4) |
(27,4) |
(28,4) |
(29,4) |
(30,4) |
|
|||||||||
(21,5) |
(22,5) |
(23,5) |
(24,5) |
(25,5) |
(26,5) |
(27,5) |
(28,5) |
(29,5) |
(30,5) |
|
|||||||||
(21,6) |
(22,6) |
(23,6) |
(24,6) |
(25,6) |
(26,6) |
(27,6) |
(28,6) |
(29,6) |
(30,6) |
|
|||||||||
(21,7) |
(22,7) |
(23,7) |
(24,7) |
(25,7) |
(26,7) |
(27,7) |
(28,7) |
(29,7) |
(30,7) |
|
|||||||||
(21,8) |
(22,8) |
(23,8) |
(24,8) |
(25,8) |
(26,8) |
(27,8) |
(28,8) |
(29,8) |
(30,8) |
|
|||||||||
(21,9) |
(22,9) |
(23,9) |
(24,9) |
(25,9) |
(26,9) |
(27,9) |
(28,9) |
(29,9) |
(30,9) |
|
|||||||||
(21,10) |
(22,10) |
(23,10) |
(24,10) |
(25,10) |
(26,10) |
(27,10) |
(28,10) |
(29,10) |
(30,10) |
|
|||||||||
(21,11) |
(22,11) |
(23,11) |
(24,11) |
(25,11) |
(26,11) |
(27,11) |
(28,11) |
(29,11) |
(30,11) |
|
|||||||||
(21,12) |
(22,12) |
(23,12) |
(24,12) |
(25,12) |
(26,12) |
(27,12) |
(28,12) |
(29,12) |
(30,12) |
|
|||||||||
(21,13) |
(22,13) |
(23,13) |
(24,13) |
(25,13) |
(26,13) |
(27,13) |
(28,13) |
(29,13) |
(30,13) |
|
|||||||||
(21,14) |
(22,14) |
(23,14) |
(24,14) |
(25,14) |
(26,14) |
(27,14) |
(28,14) |
(29,14) |
(30,14) |
|
|||||||||
(21,15) |
(22,15) |
(23,15) |
(24,15) |
(25,15) |
(26,15) |
(27,15) |
(28,15) |
(29,15) |
(30,15) |
|
|||||||||
(21,16) |
(22,16) |
(23,16) |
(24,16) |
(25,16) |
(26,16) |
(27,16) |
(28,16) |
(29,16) |
(30,16) |
|
|||||||||
(21,17) |
(22,17) |
(23,17) |
(24,17) |
(25,17) |
(26,17) |
(27,17) |
(28,17) |
(29,17) |
(30,17) |
|
|||||||||
(21,18) |
(22,18) |
(23,18) |
(24,18) |
(25,18) |
(26,18) |
(27,18) |
(28,18) |
(29,18) |
(30,18) |
|
|||||||||
(21,19) |
(22,19) |
(23,19) |
(24,19) |
(25,19) |
(26,19) |
(27,19) |
(28,19) |
(29,19) |
(30,19) |
|
|||||||||
(21,20) |
(22,20) |
(23,20) |
(24,20) |
(25,20) |
(26,20) |
(27,20) |
(28,20) |
(29,20) |
(30,20) |
|
|||||||||
(21,21) |
(22,21) |
(23,21) |
(24,21) |
(25,21) |
(26,21) |
(27,21) |
(28,21) |
(29,21) |
(30,21) |
|
|||||||||
(21,22) |
(22,22) |
(23,22) |
(24,22) |
(25,22) |
(26,22) |
(27,22) |
(28,22) |
(29,22) |
(30,22) |
|
|||||||||
(21,23) |
(22,23) |
(23,23) |
(24,23) |
(25,23) |
(26,23) |
(27,23) |
(28,23) |
(29,23) |
(30,23) |
|
|||||||||
(21,24) |
(22,24) |
(23,24) |
(24,24) |
(25,24) |
(26,24) |
(27,24) |
(28,24) |
(29,24) |
(30,24) |
|
|||||||||
(21,25) |
(22,25) |
(23,25) |
(24,25) |
(25,25) |
(26,25) |
(27,25) |
(28,25) |
(29,25) |
(30,25) |
|
|||||||||
(21,26) |
(22,26) |
(23,26) |
(24,26) |
(25,26) |
(26,26) |
(27,26) |
(28,26) |
(29,26) |
(30,26) |
|
|||||||||
(21,27) |
(22,27) |
(23,27) |
(24,27) |
(25,27) |
(26,27) |
(27,27) |
(28,27) |
(29,27) |
(30,27) |
|
|||||||||
(21,28) |
(22,28) |
(23,28) |
(24,28) |
(25,28) |
(26,28) |
(27,28) |
(28,28) |
(29,28) |
(30,28) |
|
|||||||||
(21,29) |
(22,29) |
(23,29) |
(24,29) |
(25,29) |
(26,29) |
(27,29) |
(28,29) |
(29,29) |
(30,29) |
|
|||||||||
(21,30) |
(22,30) |
(23,30) |
(24,30) |
(25,30) |
(26,30) |
(27,30) |
(28,30) |
(29,30) |
(30,30) |
|
Pr
In random samples of 100
tosses of the pair of dice, we expect approximately 100*Pr
The smallest sample size
for which we expect to observe one or more tosses showing the pair (1,1) is
1/(1/900) = 900.
Tracking The Pair (1,1) in Random Samples of n=100
Samples
1st Die |
2nd Die |
Pr{(1,1)} |
Minimum n for E100=1
for (1,1) |
E100 |
n |
p |
4 |
4 |
0.0625 |
16 |
6.25 |
7 |
0.07 |
5 |
5 |
0.04 |
25 |
4 |
11 |
0.11 |
8 |
8 |
0.015625 |
64 |
1.5625 |
0 |
0 |
10 |
10 |
0.01 |
100 |
1 |
0 |
0 |
10 |
12 |
0.008333333 |
120 |
0.8333 |
1 |
0 |
20 |
24 |
0.002083333 |
480 |
0.2083 |
0 |
0 |
30 |
30 |
0.001111111 |
900 |
0.1111 |
0 |
0 |
When an event is rare relative to a
sample size, the occurrence of that event in samples of that size will be
irregular.
At this point, work through all Part
One (Fall and Spring) Case Types except Conditional Probability, unless you’re
working ahead. Work one case type at a time. The only new cases left involve
conditional probability.
A
Partial List of Part One Case Types
Long
Run Argument/Perfect Samples
Probability
Rules
Color
Slot Machine
Pairs
of Dice
Random
Variables
Next Case Types:
Conditional
Probability
Clinical
Trial Sketch
Design
Fault Spot