Key

The Comprehensive Final Examination

Math 1107

Spring Semester 2009

CJ Alverson

 

Protocol

 

You will use only the following resources: Your individual calculator; Your individual tool-sheets (two (2) 8.5 by 11 inch sheets); Your writing utensils; Blank Paper (provided by me); This copy of the hourly and

the tables provided by me. Do not share these resources with anyone else. Show complete detail and work for full credit. Follow case study solutions and sample hourly keys in presenting your solutions.

 

Work all four cases. Using only one side of the blank sheets provided, present your work. Do not write on both sides of the sheets provided, and present your work only on these sheets. When you’re done: Print your name on a blank sheet of paper. Place your toolsheet, test and work under this sheet, and turn it all in to me. Do not share information with any other students during this hourly.

 

Sign and Acknowledge:  I agree to follow this protocol. Initial:___

 

______________________________________________________________________________________

Name (PRINTED)                                          Signature                                          Date

 

Case One | Random Variables | Color Slot Machine

 

Here is our slot machine – on each trial, it produces a color sequence, using the table below:

 

Sequence*

Probability

BBRRYRRR

.10

RRRGBRRB

.10

BBYYYGBR

.15

GRRGGYGG

.10

BGYGYRYG

.25

YYGRRBBY

.10

YYYYBGRR

.20

Total

1.00

*B-Blue, G-Green, R-Red, Y-Yellow, Sequence is numbered from left to right

 

Consider the random variable GC, defined as the number of times that green shows in the color sequence. List the values of GC, and compute the probabilities for those values.

 

Sequence*

Probability

Green Count

BBRRYRRR

.10

0

RRRGBRRB

.10

1

BBYYYGBR

.15

1

GRRGGYGG

.10

5

BGYGYRYG

.25

3

YYGRRBBY

.10

1

YYYYBGRR

.20

1

Total

1.00

 

 

Pr{GC=0} = Pr{BBRRYRRR} = .1

 

Pr{GC=1} = Pr{One of RRRGBRRB, BBYYYGBR, YYGRRBBY or YYYYBGRR Shows} = Pr{RRRGBRRB}+Pr{BBYYYGBR}+Pr{YYGRRBBY}+Pr{YYYYBGRR} = .10 + .15 + .10 + .20 = .55

 

Pr{GC=3} = Pr{BGYGYRYG}= .25

 

Pr{GC=5} = Pr{GRRGGYGG} = .10

 

 

Consider the random variable RG, defined as 1 if “RG” shows in the color sequence and as 0 if “RG” does not show in the color sequence.. List the values of RG, and compute the probabilities for those values.

 

 

Sequence*

Probability

RG

BBRRYRRR

.10

0

RRRGBRRB

.10

1

BBYYYGBR

.15

0

GRRGGYGG

.10

1

BGYGYRYG

.25

0

YYGRRBBY

.10

0

YYYYBGRR

.20

0

Total

1.00

 

 

Pr{RG = 0} = Pr{One of BBRRYRRR, BBYYYGBR, BGYGYRYG, YYGRRBBY or YYYYBGRR Shows} =

Pr{BBRRYRRR}+Pr{BBYYYGBR}+Pr{BGYGYRYG}+Pr{YYGRRBBY}+Pr{YYYYBGRR} =

.10 + .15 + .25 + .10 + .20 = .80

 

Pr{RG = 1} = Pr{One of RRRGBRRB or GRRGGYGG Shows} = Pr{RRRGBRRB}+Pr{GRRGGYGG} = .10 + .10 = .20

 

Consider the random variable B2, defined as 1 if  blue shows exactly twice in the color sequence and as 0 otherwise. List the values of B2, and compute the probabilities for those values.

 

Sequence*

Probability

B2

BBRRYRRR

.10

1

RRRGBRRB

.10

1

BBYYYGBR

.15

0

GRRGGYGG

.10

0

BGYGYRYG

.25

0

YYGRRBBY

.10

1

YYYYBGRR

.20

0

Total

1.00

 

 

 

Pr{B2 = 1} = Pr{One of BBRRYRRR, RRRGBRRB or YYGRRBBY Shows} = Pr{BBRRYRRR}+Pr{RRRGBRRB}+Pr{YYGRRBBY} =

Pr{BBRRYRRR}+Pr{RRRGBRRB}+Pr{YYGRRBBY} = .10 + .10 + .10 = .30

 

Pr{B2 = 0} = Pr{One of BBYYYGBR, GRRGGYGG, BGYGYRYG or YYYYBGRR Shows} =

Pr{BBYYYGBR}+Pr{GRRGGYGG}+Pr{BGYGYRYG}+Pr{YYYYBGRR} = .15 + .10 + .25 + .20 = .70

 

Show all work for full credit.

 

 

 

Case Two | Summary Intervals | Sea Weaselsä

Sea Weaselsä are instant pets, distributed as a kit - Sea Weasel Eggsä , Sea Weasel Water Conditionerä and Sea Weasel Foodä . A Sea Weaselä Kit is started by placing the Sea Weasel Eggsä , Sea Weasel Water Conditionerä and some water in a container. The eggs will then hatch, producing Sea Weaselsä , and some of them will survive. A random sample of Sea Weaselä Kits is selected, each selected kit is started, and the number of surviving Sea Weaselsä is counted one week after start. Here are the Sea Weaselä counts per kit

20 23 25 26 27 32 35 41 42 42 45 47 48 51 56 60 61 62 65 70 73 76 84 89 90 91 91 92  92 96 98 104 109 117 124 130 132 135 138 140 142 145 151 160 162 165 166 167 171 174 174 176 178 179 181 182 183 185 187 275

 

Let m denote the sample mean, and sd the sample standard deviation. Compute and interpret the intervals m±2sd and m±3sd, using Tchebysheff’s Inequalities and the Empirical Rule. Be specific and complete. Show your work, and discuss completely for full credit.

 

Numbers

 

n       m          sd       lower2      upper2     lower3      upper3

60    108.033    58.1273    -8.22119    224.288    -66.3485    282.415

 

lower2 = m – (2*sd) = 108.033 – (2*58.1273) » -8.22119 [0]

upper2 = m + (2*sd) = 108.033 + (2*58.1273) » 224.288

 

lower3 = m – (3*sd) = 108.033 – (3*58.1273) » -66.3485 [0]

lower3 = m + (3*sd) = 108.033 + (3*58.1273) » 282.415

 

Interpretation

 

At least 75% of the Sea Weasel kits in the sample yield between 0 and 224 Sea Weasels.

At least 89% of the Sea Weasel kits in the sample yield between 0 and 282 Sea Weasels.

 

If the Sea Weasel kit yields cluster symmetrically around a central value, becoming more rare as the kit yields fall farther out from the central value, then:

 

approximately 95% of the Sea Weasel kits in the sample yield between 0 and 224 Sea Weasels.

and approximately 100% of the Sea Weasel kits in the sample yield between 0 and 282 Sea Weasels.

 

 

Case Three | Hypothesis Test, Median | Sea Weaselsä

 

Using the data and context from Case Two, test the following: null (H0): The median Sea Weaselä Kits yield is 100 weasels (h = 100) against the alternative (H1): h < 100.  Show your work. Fully discuss the results. This discussion must include a clear discussion of the population and the population median, the family of samples, the family of errors and the interpretation of the p-value.

 

Numbers

 

20 23 25 26 27 32 35 41 42 42 45 47 48 51 56 60 61 62 65 70 73 76 84 89 90 91 91 92  92 96 98 104 109 117 124 130 132 135 138 140 142 145 151 160 162 165 166 167 171 174 174 176 178 179 181 182 183 185 187 275

 

Null: “Median Kit Yield = 100 Weasels”

Alternative: “Guess is too Large”

Error Form: Count Strictly Below 100

 

n=60

error = number of kits in the sample yielding strictly fewer than 100 Sea Weasels = 31

From the row: 60      31     0.34944,  p»0.34944

 

Interpretation

 

Each member of the Family of Samples (FoS) is a random sample of 60 Sea Weasel kits. The FoS consists of all possible samples of this type. From each member sample of the FoS, compute the sample error as the number of kits in the sample yielding strictly fewer than 100 Sea Weasels. Computing

this error for each member of the FoS yields the Family of Errors. If the median Sea Weasel kit yield is 100 Sea Weasels, then approximately 34.9% of the Family of Samples yield errors as extreme as or more extreme than our single computed error. Our sample does not seem to present significant evidence against the null hypothesis.

 

Case Four | Confidence Interval: Population Mean | BarrelCorpÔ Survival Times

BarrelCorpÔ manufactures barrels and wishes to ensure the strength and quality of its barrels. Chimpanzees traumatized the company owner as a youth; so the company uses the following test (Angry_Barrel_of_Monkeys_Test) of its barrels: Ten (10) chimpanzees are loaded into the barrel. The chimpanzees are exposed to Angry!Monkey!Gas!Ô, an agent guaranteed to drive the chimpanzees to a psychotic rage. The angry, raging, psychotic chimpanzees then destroy the barrel from the inside in an angry, raging, psychotic fashion. The survival time, in minutes, of the barrel is noted. A random sample of 50 BarrelCorpÔ barrels is evaluated using the Angry_Barrel_of_Monkeys_Test, and the survival time in minutes of each barrel is noted. The survival time of each barrel is listed below:

12, 12, 13, 14, 15, 16, 16, 17, 18, 18, 22, 23, 25, 26, 27, 29, 30, 32, 32, 33, 34, 35, 36, 37, 35, 35, 36, 38, 40, 40, 41, 42, 42, 42, 43, 43, 44, 45, 45, 47, 48, 48, 49, 50, 50, 54, 72, 77, 84, 86,  88, 93, 95, 97, 99, 118

Estimate the population mean BarrelCorpÔ barrel survival time under the Angry Barrel of Monkeys Test with 95% confidence. That is, compute and discuss a 95% confidence interval for this population mean. Show your work. Fully discuss the results. This discussion must include a clear discussion of the population and the population mean, the family of samples, the family of intervals and the interpretation of the interval.

 

Work all four (4) cases.

Numbers

n       m          sd         se      lower95    upper95

56    43.5357    25.3886    3.39269    36.7503    50.3211

From row: 2.00 0.022750 0.95450, Z»2

lower95 = m – (z*(sd/sqrt(56)) = 43.5357 – (2* 25.3886/sqrt(56)) » 36.7503

upper95 = m + (z*(sd/sqrt(56)) = 43.5357 + (2* 25.3886/sqrt(56)) » 50.3211

Report the interval as [36.8, 50.3].

Interpretation

Each member of the Family of Samples(FoS) is a random sample of 56 BarrelCorp barrels – the FoS consists of every possible sample of this type. From each member of the FoS, compute the sample mean survival time (in minutes) of the barrels in the sample, the sample standard deviation, and then the interval [lower95 = m – (z*(sd/sqrt(56)), upper95 = m + (z*(sd/sqrt(56))]. Computing an interval in this way from each member of the FoS yields a Family of Intervals(FoI), approximately 95% of which cover the population mean survival time (in minutes) for BarrelCorps barrels. If our single computed interval is in this 95% supermajority, then the population mean survival time for BarrelCorps barrels undergoing the AngryMonkey test is between 36.8 and 50.3 minutes.

Table 1. Means and Proportions

 Z(k) PROBRT PROBCENT

0.05 0.48006 0.03988

0.10 0.46017 0.07966

0.15 0.44038 0.11924

0.20 0.42074 0.15852

0.25 0.40129 0.19741

0.30 0.38209 0.23582

0.35 0.36317 0.27366

0.40 0.34458 0.31084

0.45 0.32636 0.34729

0.50 0.30854 0.38292

0.55 0.29116 0.41768

0.60 0.27425 0.45149

0.65 0.25785 0.48431

0.70 0.24196 0.51607

0.75 0.22663 0.54675

0.80 0.21186 0.57629

0.85 0.19766 0.60467

0.90 0.18406 0.63188

0.95 0.17106 0.65789

1.00 0.15866 0.68269

Z(k) PROBRT PROBCENT

1.05 0.14686 0.70628

1.10 0.13567 0.72867

1.15 0.12507 0.74986

1.20 0.11507 0.76986

1.25 0.10565 0.78870

1.30 0.09680 0.80640

1.35 0.088508 0.82298

1.40 0.080757 0.83849

1.45 0.073529 0.85294

1.50 0.066807 0.86639

1.55 0.060571 0.87886

1.60 0.054799 0.89040

1.65 0.049471 0.90106

1.70 0.044565 0.91087

1.75 0.040059 0.91988

1.80 0.035930 0.92814

1.85 0.032157 0.93569

1.90 0.028717 0.94257

1.95 0.025588 0.94882

2.00 0.022750 0.95450

Z(k) PROBRT PROBCENT

2.05 0.020182 0.95964

2.10 0.017864 0.96427

2.15 0.015778 0.96844

2.20 0.013903 0.97219

2.25 0.012224 0.97555

2.30 0.010724 0.97855

2.35 0.009387 0.98123

2.40 0.008198 0.98360

2.45 0.007143 0.98571

2.50 0.006210 0.98758

2.55 0.005386 0.98923

2.60 0.004661 0.99068

2.65 0.004025 0.99195

2.70 .0034670 0.99307

2.75 .0029798 0.99404

2.80 .0025551 0.99489

2.85 .0021860 0.99563

2.90 .0018658 0.99627

2.95 .0015889 0.99682

3.00 .0013499 0.99730

 Table 2. Medians

n         error          base p-value

60       0     1.00000                                     60       1     1.00000                                     60       2     1.00000                                     60       3     1.00000                                     60       4     1.00000                                     60       5     1.00000                                     60       6     1.00000                                     60       7     1.00000                                     60       8     1.00000                                     60       9     1.00000                                     60      10     1.00000                                     60      11     1.00000                                     60      12     1.00000                                     60      13     0.99999                                     60      14     0.99998                                     60      15     0.99993                                     60      16     0.99980                                     60      17     0.99947                                     60      18     0.99866                                     60      19     0.99689                                     60      20     0.99326                                    

n         error          base p-value

60      21     0.98633                                     60      22     0.97405                                     60      23     0.95377                                     60      24     0.92250                                     60      25     0.87747                                     60      26     0.81685                                     60      27     0.74052                                     60      28     0.65056                                     60      29     0.55129                                     60      30     0.44871                                     60      31     0.34944                                     60      32     0.25948                                     60      33     0.18315                                     60      34     0.12253                                     60      35     0.07750                                     60      36     0.04623                                     60      37     0.02595                                     60      38     0.01367                                     60      39     0.00674                                     60      40     0.00311                                      

n         error          base p-value

60      41     0.00134                                     60      42     0.00053                                     60      43     0.00020                                     60      44     0.00007                                     60      45     0.00002                                     60      46     0.00001                                     60      47     <0.00001                                     60      48     <0.00001                                     60      49     <0.00001
                                 60      50     <0.00001                                   60      51     <0.00001                                   60      52     <0.00001                                   60      53     <0.00001                                   60      54     <0.00001                                   60      55     <0.00001                                   60      56     <0.00001                                   60      57     <0.00001                                   60      58     <0.00001                                        60      59     <0.00001                                            60      60     <0.00001