Part One: Probability

Case Study #1.10: Rare Event Approach

 

Case Description: Demonstrate the Rare Event Approach

 

Experiment I:

 

We toss a pair of fair, independently operating 10-sided dice, and observe the sum of the face values.

 

The sums and probabilities are listed below. You can and should verify them later.

 

                               

Sum     Percent

        Probability

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

2          1.00

3          2.00

4          3.00

5          4.00

6          5.00

7          6.00

8          7.00

9          8.00

10         9.00

11         10.00

12         9.00

13         8.00

14         7.00

15         6.00

16         5.00

17         4.00

18         3.00

19         2.00

20         1.00

 

Case Objectives:

 

According to the model in experiment I, the event that SUM=2 shows should be a relatively rare event. Track the occurrence of SUM=2 in 100 tosses of a pair of faair ten-sided dice (2D10).

 

According to the model in experiment I, the event that 10 £ SUM £ 12 should not be a relatively rare event. Track the occurrence of 10 £ SUM £ 12 in 100 tosses of a pair of fair ten-sided dice (2D10).

 

Experiment II:

 

We toss a pair of fair, independently operating 20-sided dice, and observe the sum of the face values.

 

The sums and probabilities are listed below. You can and should verify them later, if you have too much free time.

 

                               

 

                                                                                         

    Sum      Number     Probability   Cumulative     Cumulative

          of Pairs   Percent       Frequency      Percent

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

2           1        0.25             1         0.25

3           2        0.50             3         0.75

4           3        0.75             6         1.50

5           4        1.00            10         2.50

6           5        1.25            15         3.75

7           6        1.50            21         5.25

8           7        1.75            28         7.00

9           8        2.00            36         9.00

10           9        2.25            45        11.25

11          10        2.50            55        13.75

12          11        2.75            66        16.50

13          12        3.00            78        19.50

14          13        3.25            91        22.75

15          14        3.50           105        26.25

16          15        3.75           120        30.00

17          16        4.00           136        34.00

18          17        4.25           153        38.25

19          18        4.50           171        42.75

20          19        4.75           190        47.50

21          20        5.00           210        52.50

22          19        4.75           229        57.25

23          18        4.50           247        61.75

24          17        4.25           264        66.00

25          16        4.00           280        70.00

26          15        3.75           295        73.75

27          14        3.50           309        77.25

28          13        3.25           322        80.50

29          12        3.00           334        83.50

30          11        2.75           345        86.25

31          10        2.50           355        88.75

32           9        2.25           364        91.00

33           8        2.00           372        93.00

34           7        1.75           379        94.75

35           6        1.50           385        96.25

36           5        1.25           390        97.50

37           4        1.00           394        98.50

38           3        0.75           397        99.25

39           2        0.50           399        99.75

40           1        0.25           400       100.00

Case Objectives:

 

According to the model in experiment II, the event that SUM=2 shows should be a rare event (Pr{SUM=2}=.025). Track the occurrence of SUM=2 in 100 tosses of a pair of fair twenty-sided dice (2D20).

 

According to the model in experiment II, the event that 10 £ SUM £ 20 should not be a relatively rare event (Pr{10 £ SUM £ 20}=.385). Track the occurrence of 10 £ SUM £ 20 in 100 tosses of a pair of fair twenty-sided dice (2D20).