Summaries

Session 1.3

25th January 2010

We extend our study of probability to dice. We revisit the idea of a model or population proportion as a probability, and introduce the idea of a random variable.

Models

A Fair, Six-sided Die

Face Value, d6 (FV d6)

Probability

1

1/6

2

1/6

3

1/6

4

1/6

5

1/6

6

1/6

A Fair, Three-sided Die

Face Value, d3 (FV d3)

Probability

1

1/3

2

1/3

3

1/3

Using a Fair, Six-sided Die to Simulate A Fair, Three-sided Die

Face Value, d6 (FV d6)

Mapped Face Value, d3 (FV d3)

1

1

2

3

2

4

5

3

6

Probability Calculations (fair d6fair d3)

Pr{E} denotes Probability for the event E.

The Fair d6 Model

FV: Face Values: 1,2,3,4,5,6

Fair Model: Equally likely face values – 1/6 per face value

 

Pr{d6 Shows 1} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “1”.

 

Pr{d6 Shows 2} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “2”.

 

Pr{d6 Shows 3} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “3”.

 

Pr{d6 Shows 4} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “4”.

 

Pr{d6 Shows 5} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “5”.

 

Pr{d6 Shows 6} = (1/6) @ .1667 or 16.67%

In long runs of tosses, approximately 1 toss in 6 shows “6”.

 

The Fair d3 Model Nested within a Fair d6 Model

 

FV: Face Values: 1(1,2), 2(3,4), 3(5,6)

Fair Model: Equally likely face values –  (2/6 =)1/3 per face value.

 

Pr{d3 shows “1”} = Pr{d6 Shows 1} + Pr{d6 Shows 2}1 = (1/6) + (1/6) = 2/6

= 1/3 @ .3333 or 33.33%

In long runs of tosses, approximately 1 toss in 3 shows “1”.

 

Pr{d3 shows “2”} = Pr{d6 Shows 3} + Pr{d6 Shows 4} = (1/6) + (1/6)2 = 2/6

= 1/3 @ .3333 or 33.33%

In long runs of tosses, approximately 1 toss in 3 shows “2”.

 

Pr{d3 shows “3”} = Pr{d6 Shows 5} + Pr{d6 Shows 6} = (1/6) + (1/6) = 2/6

= 1/33 @ .3333 or 33.33%

In long runs of tosses, approximately 1 toss in 3 shows “3”.

 

1. Additive Rule – Map Faces to Faces

2. Inheritance of Fair Model

3. Fair d3 Model from Fair d6 Model

 

Compare the correspondence of the sample proportions (p) to the model probabilities (P).

Samples 6.30

n=50

Sample #1

Sample #2

d6

n

p

d3

n

p

d6

n

p

d3

n

p

1

7

0.14

1

10

0.20

2

8

0.16

1

15

0.30

2

5

0.10

1

15

0.30

3

11

0.22

3

8

0.16

4

8

0.16

2

19

0.38

4

9

0.18

2

17

0.34

5

10

0.20

5

9

0.18

6

6

0.12

3

16

0.32

6

9

0.18

3

18

0.36

Total

50

1.00

50

1.00

Total

50

1.00

50

1.00

Sample #3

Sample #4

d6

n

p

d3

n

p

d6

n

p

d3

n

p

1

5

0.10

1

12

0.24

2

5

0.10

1

10

0.20

2

6

0.12

1

18

0.36

3

5

0.10

3

10

0.20

4

11

0.22

2

16

0.32

4

8

0.16

2

18

0.36

5

14

0.28

5

5

0.10

6

10

0.20

3

24

0.48

6

9

0.18

3

14

0.28

Total

50

1.00

50

1.00

Total

50

1.00

50

1.00

Sample #5

Sample #6

d6

n

p

d3

n

p

d6

n

p

d3

n

p

1

7

0.14

1

4

0.08

2

10

0.20

1

17

0.34

2

13

0.26

1

17

0.34

3

10

0.20

3

14

0.28

4

4

0.08

2

14

0.28

4

3

0.06

2

17

0.34

5

7

0.14

5

7

0.14

6

12

0.24

3

19

0.38

6

9

0.18

3

16

0.32

Total

50

1.00

50

1.00

Total

50

1.00

50

1.00

n=100

Pooled 12

d6

n

p

d3

n

p

1

17

0.17

2

13

0.13

1

30

0.30

3

19

0.19

4

17

0.17

2

36

0.36

5

19

0.19

6

15

0.15

3

34

0.34

Total

100

1.00

100

1.00

Pooled 34

d6

n

p

d3

n

p

1

17

0.17

2

11

0.11

1

28

0.28

3

15

0.15

4

19

0.19

2

34

0.34

5

19

0.19

6

19

0.19

3

38

0.38

Total

100

1.00

100

1.00

Pooled 56

d6

n

p

d3

n

P

1

11

0.11

2

23

0.23

1

34

0.34

3

24

0.24

4

7

0.07

2

31

0.31

5

14

0.14

6

21

0.21

3

35

0.35

Total

100

1.00

100

1.00

 

n=150

 

Pooled 135

Pooled 246

d6

n

P

d3

n

p

d6

n

p

d3

n

p

1

19

19/150 ≈0.13

1

26

26/150 ≈0.17

2

23

23/150 ≈0.15

1

42

0.28

2

24

24/150 ≈0.16

1

50

0.33

3

26

26/150 ≈0.17

3

32

32/150 ≈0.21

4

23

23/150 ≈0.15

2

49

0.33

4

20

20/150 ≈0.13

2

52

0.35

5

31

31/150 ≈0.21

5

21

21/150 ≈0.14

6

28

28/150 ≈0.19

3

59

0.39

6

27

27/150 ≈0.18

3

48

0.32

Total

150

1.00

150

1.00

Total

150

1.00

150

1.00

 

n=300

 

Pooled All

d6

n

p

d3

n

p

1

45

45/300≈0.15

2

47

47/300≈0.16

1

92

92/300≈0.31

3

58

58/300≈0.19

4

43

43/300≈0.14

2

101

101/300≈0.34

5

52

52/300≈0.17

6

55

55/300≈0.18

3

107

107/300≈0.36

Total

300

1.00

300

1.00

 

Compare the correspondence of the sample proportions (p) to the model probabilities (P).

 

Fair Models

d6

N

P

d3

N

P

1

1

1/6 ≈ 0.1667

1

1

1/3 ≈ 0.3333

2

1

1/6 ≈ 0.1667

3

1

1/6 ≈ 0.1667

2

1

1/3 ≈ 0.3333

4

1

1/6 ≈ 0.1667

5

1

1/6 ≈ 0.1667

3

1

1/3 ≈ 0.3333

6

1

1/6 ≈ 0.1667

Total

6

1.0000

3

1.0000

 

 

Samples 8:00

 

n=50

 

Sample #1

Sample #2

d6

N

p

d3

n

p

d6

n

p

d3

n

p

1

5

5/50 = 0.10

1

10

0.20

2

10

10/50 = 0.20

1

15

0.30

2

7

0.14

1

17

17/50 = 0.34

3

11

11/50 = 0.22

3

9

0.18

4

11

11/50 = 0.22

2

22

0.44

4

9

0.18

2

18

18/50 = 0.36

5

8

8/50 = 0.16

5

9

0.18

6

5

5/50 = 0.10

3

13

0.26

6

6

0.12

3

15

15/50 = 0.30

Total

50

1.00

50

1.00

Total

50

1.00

50

1.00

Sample #3

Sample #4

d6

N

p

d3

n

p

d6

n

p

d3

n

p

1

6

0.12

1

10

0.20

2

12

0.24

1

18

0.36

2

8

0.16

1

18

0.36

3

9

0.18

3

10

0.20

4

8

0.16

2

17

0.34

4

7

0.14

2

17

0.34

5

7

0.14

5

7

0.14

6

8

0.16

3

15

0.30

6

8

0.16

3

15

0.30

Total

50

1.00

50

1.00

Total

50

1.00

50

1.00

Sample #5

Sample #6

d6

N

p

d3

n

p

d6

n

p

d3

n

p

1

6

0.12

1

8

0.16

2

5

0.10

1

11

0.22

2

9

0.18

1

17

0.34

3

8

0.16

3

7

0.14

4

11

0.22

2

19

0.38

4

11

0.22

2

18

0.36

5

8

0.16

5

10

0.20

6

12

0.24

3

20

0.40

6

5

0.10

3

15

0.30

Total

50

1.00

50

1.00

Total

50

1.00

50

1.00

 

 

n=100

 

Pooled 12

d6

n

p

d3

n

P

1

15

15/100=0.15

2

17

17/100=0.17

1

32

0.32

3

20

20/100=0.20

4

20

20/100=0.20

2

40

0.40

5

17

17/100=0.17

6

11

11/100=0.11

3

28

0.28

Total

100

1.00

100

1.00

Pooled 34

d6

n

p

d3

n

P

1

16

0.16

2

20

0.20

1

36

36/100=0.36

3

19

0.19

4

15

0.15

2

34

34/100=0.34

5

14

0.14

6

16

0.16

3

30

30/100=0.30

Total

100

1.00

100

1.00

Pooled 56

d6

n

p

d3

n

p

1

14

0.14

2

14

0.14

1

28

0.28

3

15

0.15

4

22

0.22

2

37

0.37

5

18

0.18

6

17

0.17

3

35

0.35

Total

100

1.00

100

1.00

 

 

n=150

Pooled 135

Pooled 246

d6

n

p

d3

n

p

d6

n

P

d3

n

p

1

17

17/150 ≈ 0.11

1

28

28/150 ≈ 0.19

2

27

27/150 ≈ 0.18

1

44

0.29

2

24

24/150 ≈ 0.16

1

52

0.35

3

28

28/150 ≈ 0.19

3

26

26/150 ≈ 0.17

4

30

30/150 ≈ 0.20

2

58

0.39

4

27

27/150 ≈ 0.18

2

53

0.35

5

23

23/150 ≈ 0.15

5

26

26/150 ≈ 0.17

6

25

25/150 ≈ 0.17

3

48

0.32

6

19

19/150 ≈ 0.13

3

45

0.30

Total

150

1.00

150

1.00

Total

150

1.00

150

1.00

 

 

n=300

 

Pooled All

d6

n

p

d3

n

p

1

45

45/300 ≈0.15

2

51

51/300 ≈0.17

1

96

96/300 ≈0.32

3

54

54/300 ≈0.18

4

57

57/300 ≈0.19

2

111

111/300 ≈0.37

5

49

45/300 ≈0.16

6

44

44/300 ≈0.15

3

93

93/300 ≈0.31

Total

300

1.00

300

1.00

 

 

Pooled Across Sections: 6:30 + 8:00

 

Pooled 135

Pooled 246

Pooled All

d6

n

p

d3

n

p

d6

n

p

d3

n

p

d6

n

p

d3

n

p

1

36

0.12

1

54

0.18

1

90

0.15

2

50

0.17

1

86

0.29

2

48

0.16

1

102

0.34

2

98

0.16

1

188

0.31

3

54

0.18

3

58

0.19

3

112

0.19

4

53

0.18

2

107

0.36

4

47

0.16

2

105

0.35

4

100

0.17

2

212

0.35

5

54

0.18

5

47

0.16

5

101

0.17

6

53

0.18

3

107

0.36

6

46

0.15

3

93

0.31

6

99

0.17

3

200

0.33

Total

300

1.00

300

1.00

Total

300

1.00

300

1.00

Total

600

1.00

600

1.00

 

Compare the correspondence of the sample proportions (p) to the model probabilities (P).

 

 

Fair Models

d6

N

P

d3

N

P

1

1

1/6 ≈ 0.1667

1

1

1/3 ≈ 0.3333

2

1

1/6 ≈ 0.1667

3

1

1/6 ≈ 0.1667

2

1

1/3 ≈ 0.3333

4

1

1/6 ≈ 0.1667

5

1

1/6 ≈ 0.1667

3

1

1/3 ≈ 0.3333

6

1

1/6 ≈ 0.1667

Total

6

1.0000

3

1.0000

 

Data